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Abstract. Inferring the metabolic pathways that control the cell cycles
is a challenging and difficult task. Its importance in the process of un-
derstanding living organisms has motivated the development of several
models to infer gene regulatory networks from DNA microarray data. In
the last years, many works have been adding biological information to
those models to improve the obtained results. In this work, we add prior
biological knowledge into a Bayesian Network model with non parametric
regression and analyze the effects of such information in the results.

1 Introduction

Gene regulation in eukaryotes is the result of interactions between proteins,
genes, metabolites, enhancers, promoters, transcription factors and other bio-
logical elements. These interactions control when and with what intensity each
gene is expressed in the genome and transcribed into RNA. In order to make it
easier to discover the metabolical pathways which schematically describe such
interactions, we can focus on just one kind of the elements cited above. For
example, we can look only at genes, obtaining a network with gene-gene inter-
actions, which is called a gene regulatory network. To infer the architecture of
this type of network from gene expression microarray data is still a challenge in
Bioinformatics.

Several mathematical models have been proposed to infer gene regulatory
networks from microarray data: Boolean networks [1], differential equations [2],
Bayesian networks [3/4], and others. These methods have achieved good results,
but they still face hard problems, such as large computational demands and rel-
atively poor quality in the results obtained, in the form of wrong edge directions
and gene bypassing. Those problems may be due to the volume of data available
to train the networks, usually far less than the proven number of samples needed,
which for networks with binary nodes is O(n? logn? logn**1) [5], where n is the
total number of genes and k is the maximum input degree of a node.

In order to try to overcome such problems, prior biological information is
being added to some models. Hartemink et al. [6] have used Bayesian network
with simulated annealing and Bayesian Scoring Metric (BSM) to choose the
best network, and genomic location information to add prior knowledge to the
model. Imoto et al. [7] designed a general framework for combining microarray
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data with biological information, and Tamada et al. [§] expanded this framework
using motif detection to improve the model results. Kightley et al. [9] used an
algorithm based on an epistemic approach and added prior knowledge to the
input data.

In this work we perform a careful analysis of the effect that prior knowledge
may have in the quality of the results obtained. We chose to use as reference
a Bayesian network model and a combination of nonparametric regression with
Bayesian Information Criterion (BIC), which was developed to infer the tricar-
boxylic (TCA) cycle of the Saccharomices cerevisiae cell cycle, with relatively
good results [I0]. Our analysis shows that, while adding prior knowledge actu-
ally yields better results to a certain extent, the degree of improvement is more
attached to the quality of the information added than to its volume.

2 Network Inference Model

Under the Bayesian network model, nodes represent genes and edges represent
relations between genes. Let X = (X1, Xa,..., X,,)T be a random n-dimensional
vector containing the genes to be analyzed, and assume that G is a directed
graph. We use a joint density distribution where each gene follows a normal dis-
tribution with a 8-spline non-parametric model with Gaussian noise. We define
the density distribution as:
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where x; is the vector of observations of the ith gene, s is the number of observa-
tions of a gene, x;; is the jth observation of the ith gene, p;; is the observation
vector of parent genes, g = (01, ...,0,)7 is a parameter vector in graph G, and
0; is a parameter vector in the model f;, i.e., the model of the ith gene.

In order to choose the network that best reproduces the relations between
the genes, given the observations, we use BIC as follows:

log p(G|X) = — log p(L)
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where p(G|X) is the probability of the graph, given the observations X, and d;
is the dimension of 6;. The chosen final graph is the one which minimizes (),
minimizing each node individually.

We used a ‘voting’ criterion to choose the edges of the final graph. The
program was run a certain number of times and, after that, the edges which had
a score above a threshold were selected. This score corresponded to the sum of
the two possible relations between the two genes considered. The direction of
the edge was chosen as the one which occurred the most. For example, suppose
that we ran the program 10 times, and the results were such that in 3 of the
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executions, we obtained the edge (Gene 1, Gene 2); in 4 of the executions, we
had (Gene 2, Gene 1); (Gene 3, Gene 4) was obtained only once, and (Gene 4,
Gene 3) never appeared. According to our criterion, if the threshold is set to
5, (Gene 2, Gene 1) is the only chosen edge, as the relations between those
two genes added up to 7, and (Gene 2, Gene 1) appeared more than (Gene 1,
Gene 2).

3 Experiments and Results

We used the model described in the previous section to infer the aerobic res-
piration cycle (TCA cycle) of Saccharomyces cerevisiae. According to Hoffgen
[5], it would be necessary to have more than 700 samples in order to guarantee
estimation of the simplified network architecture. Such number of samples is too
large and there are still no databases to provide them. Nevertheless, fairly good
results can been obtained from the available microarray data, as shown in this
work. In the experiments presented in this section, we used the alpha time series
consisting of 18 time observations, which is one of the series of Spellman [IT],
using 600 iterations.

We build our analysis around a Bayesian network model that uses a combi-
nation of nonparametric regression with Bayesian Information Criterion (BIC),
with no previous knowledge, which was developed to infer the tricarboxylic
(TCA) cycle of the Saccharomices cerevisiae cell cycle [10]. We call that model
Experiment 1, and its result is shown in Figure [[l where the reference network
is shown on the left, while the network on the right was inferred by the model
with threshold set to 50% of the total number of iterations.
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Fig. 1. Partial representation of respiration metabolic pathway of S. cerevisiae. On the
left, the reference network; on the right, the network generated by the model without
prior knowledge.
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In all figures in this text, a circle represents a correct edge, while a triangle
indicates inverted direction or gene bypassing, and a square represents an extra
edge (not in the reference network).

In order to evaluate to which extent prior knowledge information could im-
prove the results of the model, we ran several series of experiments fixing for each
one the presence of a certain number of edges. The results in general clearly point
to directions that can help one to choose which information to add when building
a model.

An important general observation is that while the results almost always
present some improvement, that is not highly significant, meaning that the num-
ber of samples is still a big factor. Another important result is that the number
of edges informed is not as important as the correctness of those. That is, if one
incorrect edge is informed, the model may have a performance that is actually
worse than that of the model without prior knowledge.

To illustrate what may happen, we present the results of two experiments.

Experiment 2 consisted on adding biological information to the model of
Experiment 1 through the preselection of five edges which had to appear in
the final graph. We chose three edges corresponding to relations between co-
regulated genes: (IDH2, IDH1), (LPD1, KGD1) and (SDH4, SDH2), and two
edges corresponding to the beginning and end of the TCA cycle: (MDH1, ACO1)
and (FUM1, MDH1).

VB IDHL = IDHD ) )
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Fig. 2. Respiration metabolic pathway generated by our model. On the left, network
inferred in Experiment 2. On the right, network inferred in Experiment 3.

The final network of Experiment 2 is shown in Figure 2l on the left. Cir-
cles, triangles and squares in this figure have the same meaning as in Figure [T}
and a P indicates a preselected edge. The standard name of gene YFR244C,
shown in Figure 2 is LSC2, but the systematic name was kept for having been
used in Kim’s work [12] and others [I0]. We can notice that, by adding prior
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knowledge, we lost one of the correct edges [(SDH4, FUM1)] found in Exper-
iment 1. However, we detected two other correct edges [(IDH2, KGD1) and
(YGR244C, SDH2)] and eliminated two cases of bypassing or inverted edges
[(FUM1, ACO1) and (FUM1, SDH2)]. The number of incorrect edges remained
the same, although those edges differed: we had (FUMI, IDH1) and (SDH4,
KGD1) in Experiment 1, and (SDH4, IDH1) and (KGD2, ACO1) in Experiment
2. This second model had 7 correct edges, 2 incorrect ones, and 3 occurrences
of bypassing or inverted direction. One can say that some edges really improved
the model’s result, specially (LPD1, KGD1) and (SDH4, SDH2).

Experiment 3 consisted on choosing a subset of edges used in Experiment
2, namely: (LPD1, KGD1), (SDH4, SDH2) and (IDH2, IDH1). The result of
Experiment 3 is shown in Figure [2 on the right, and is comparable to that
of Experiment 2. An incorrect edge [(KGD2, ACO1)] was eliminated, while an
occurrence of bypassing was introduced [(FUM1, ACO1)]. The number of correct
edges of Experiment 3 was the same as in Experiment 2, in spite of the former’s
using less prior knowledge.

The experiments in general showed that relations of co-regulation are more
effective information than causal relations. One difficulty common to all experi-
ments was the fact that the part of the network next to the external “interfer-
ence” signal was never correctly rebuilt. That can probably be explained by the
large number of nodes (genes) in that region that were ignored in the reference
model. That point will require more careful analysis.

More information on the experiments made can be found at [I3].

4 Conclusion

Many mathematical models are being used to infer gene networks nowadays but
all of them struggle to overcome two main problems, namely: determining the
direction of edges and deciding whether a relation between genes is direct or not.
These problems mainly arise due to the difficulty in obtaining reliable data in
large quantities. The addition of prior knowledge to the models is a promising
way of trying to overcome microarray data flaws.

In this work we presented the analysis of the behavior of a Bayesian Network
model with non parametric regression and Bayesian Information Criterion in
the presence of prior knowledge. Despite the small number of available samples
to train the model, the results were encouraging. The experiments showed that
relations of co-regulation is more effective information than causal relations.
Furthermore, the correctness of the informed edges has a major impact on the
results: informing incorrect edges produced worse results than those obtained
with no prior knowledge at all.

As future work, the authors will add to the model more prior informa-
tion about the beginning and end of the TCA cycle (upper part of the net-
work shown in Figure ), as this region presents the smallest number of correct
guesses of the model. Experiments with other metabolic pathways are also being
done.
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