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Abstract. Differential Evolution (DE) is a simple and surprisingly efficient 
algorithm for global optimization over continuous spaces. It has reportedly 
outperformed many versions of EA and other search heuristics when tested over 
both benchmark and real world problems.  However the performance of DE 
deteriorates severely if the fitness function is noisy and continuously changing. 
In this paper we propose an improved DE scheme which can efficiently track 
the global optima of a noisy function. The scheme performs better than the 
classical DE, PSO, and an EA over a set of benchmark noisy problems. 

1   Introduction 

The problem of optimizing noisy or imprecise (not exactly known) functions occurs 
in diverse domains of engineering application, especially in the task of experimental 
optimizations. A number of methods for dealing with these noisy optimization 
problems have been proposed in the last few years by various experts in the fields of 
evolutionary programming (EP) [1], evolutionary strategies (ES) [2], genetic 
algorithms (GA) [3] and particle swarm optimization (PSO) [4]. Although DE is a 
simple and very fast technique for numerical optimization, it is reported in [5] that the 
performance of DE becomes poorer in comparison to EA when the function to be 
optimized is corrupted by noise and accuracy of the results is a vital factor.  

In this study we propose an improved DE (DE/Rand1/Exp) algorithm where the 
scalar factor used to weigh the difference vector has been made completely random. 
We also introduce a novel threshold based selection strategy for the DE algorithm. 
Under this scheme an offspring vector replaces its parent in the next generation only 
if its fitness is greater than the parent’s fitness by a certain threshold value. This 
provides prevention from accepting poor candidate solutions, which may deceptively 
appear fitter due to noise.  

2   The Classical Differential Evolution – A Brief Introduction  

DE [7], [8] searches for a global optimum point in an N-dimensional hyperspace. It 
begins with a randomly initialized population of N-dimensional real-valued parameter 
vectors. Each vector forms a candidate solution to the multi-dimensional optimization 
problem. Unlike the conventional GA, the reproduction scheme in DE is maintained 
as follows. For each individual vector Gk

D belonging to generation D, randomly 
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sample three other individuals Gi
D, Gj

D and Gm
D from the same generation (for distinct 

i, j, k and m), calculate the difference of the components (chromosomes) of Gi
D and 

Go
d , scale it by a scalar R ( ]1,0[∈ ) and create a trial vector by adding the result to 

the chromosomes of Gk
D.  

 
       Gk ,n

D+1 = Gm ,n
D  + R.(Gi, n

D – Gj, n
D)            if randn (0, 1) < CR  

                                                                                                                                     (1) 
                    = Gk, n

D,                                            otherwise.                       
 

for the n-th component of each parameter vector.  
    CR ( ]1,0[∈ ) is the crossover constant. The trial solution is evaluated and replaces 

its parent Gk
D. deterministically if its fitness is better.  

3   The Newly Proposed Scheme  

It is an observed fact that DE needs hardly any parameter tuning and converges 
surprisingly faster than PSO, GA and EA in most of the cases of static optimization 
problems. But we strongly feel that DE uses a less stochastic and greedier approach 
which makes the situation difficult for it whenever there is noise in the scenario.  

In the original DE (1) the difference vector (Gi-Gj) is scaled by a constant factor 
‘R’. Usually the most popular choice for this control parameter in DE is in the range 
of (0.4, 1). However, we set this scale factor to change in a random fashion in the 
range (0.5, 1) by using the relation [11]                                     

                                           R = 0.5*(1+ rand (0, 1))                                                    (2)                                             

where rand (0,1) is a uniformly distributed random number within the range [0, 1]. 
The mean value of the scale factor remains at 0.75. This allows for stochastic 
variation in the amplification of the difference vector and hence helps retain the 
population diversity as the search progresses.  

Following the work done on EA in [6] we take up a threshold based selection 
procedure for DE. Here the offspring vector substitutes its parent vector in the new 
generation if its fitness is lesser than the fitness of the parent (in case of minimization 
problems) by a threshold margin τ. We keep the threshold margin proportional to the 
noise strength or variance (σn

2) i.e.   

                                        
2. nk στ = .                                                                      (3) 

4   Experimental Setup and Simulation Strategy  

We have used the noisy versions of the following benchmark functions enlisted in 
table 1. All of these are minimization problems. The noisy versions of the benchmark 
functions are defined as: 

                       ),0()()( 2σNxfxf noisy +=
rr

                                                                  (4) 

with N(0, σ2) = Normal (or Gaussian) distribution with mean 0 and variance σ2. To 
obtain N we take up the Box and Muller method [9] with various values of σ2. In this 
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work, we compare the performance of Particle Swarm Optimization (PSO), classical 
DE, the new scheme and Evolutionary Algorithm [10] over the noisy benchmarks 
listed above. Due to space limitations, it is not possible to give the brief description of 
the competitor algorithms.  

Table 1. Benchmark functions for simulation 

Name of the 
Function and Dimension 

Mathematical Representation 

Sphere function (50D) 
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Rastrigin function (50D) 
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Levy No. 5 (2D) 
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5   Results of Simulation 

Although we have experimented with noise variance values 0, 0.1, 0.2 ...1, due to 
space limitations we tabulate the final result in table 2 only for σn

2 = 1.0 i.e. when the 
noise strength is highest.   

                  (a) Sphere                               (b) Griewank                   (c) Rosenbrock                         

                        
                                                                                                                                                                                        
   
                           
 
 
 
                   
                                      (d) Levy No. 5                  (e) Rastrigirn  

Fig. 2. Progress to the optimum solution 
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                          (a) Rosenbrock                                (b) Griewank 

Fig. 3. Variation of mean convergence time with increase in dimensionality of the search space. 
(Shaded graph accounts for the new algorithm).    

Table 2. Mean and Standard Error (±SE) of the Final Results after 105 Function Evaluations 

Function DE PSO EA New Scheme 

        f1 0.2145±0.02408 0.3562±0.06021 0.05002±0.0056 6.123E-6±0.0002 
        f2 42.2748±0.1741 4559.75±867.89 114.25±12.68 1.27±7.363 
        f3 2.4169±0.04591 51.4508±3.0067 32.7144±1.656 2.6148±0.0474 
        f4 3.7142±0.0766 13.6445±1.4435 1.0975±0.0026 0.2113±0.00054 
        f5 0.1386±0.0309 0.7765±0.1137 0.0982±0.02573 0.02215±0.00663 

6   Conclusion  

In this paper we firstly point out that, DE due to employing a deterministic selection 
scheme and having no random mutation process becomes ‘greedy’ and fails to 
optimize noisy functions satisfactorily. As a remedy to this problem, we equip the 
basic algorithm with a randomly changing scale factor and a threshold based selection 
scheme. Substantial empirical evidence has been provided to justify the usefulness of 
the proposed approach.  The new method has been compared against (a) the basic DE, 
(b) the PSO, and (c) EA using a five-function test suite.  
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