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Abstract. We propose a novel hybrid Hölder-SVM detection algorithm
for arrhythmia classification. The Hölder exponents are computed effi-
ciently using the wavelet transform modulus maxima (WTMM) method.

The hybrid system performance is evaluated using the benchmark
MIT-BIH arrhythmia database. The implemented model classifies 160 of
Normal sinus rhythm, 25 of Ventricular bigeminy, 155 of Atrial fibrillation
and 146 of Nodal (A-V junctional) rhythm with 96.94% accuracy. The
distinct scaling properties of different types of heart rhythms may be of
clinical importance.

1 Introduction

Arrhythmia is a common term for any cardiac rhythm which deviates from
normal sinus rhythm. Characterization and classification of such arrhythmia
signals is an important step in developing devices for monitoring the health
of individuals. Typical and abnormal signals are shown in Fig. 1. Arrhythmias
are of different kinds, and exhibit long-term non-stationary patterns. Concepts
and techniques including Fourier [1], wavelets [1], chaos parameters [2] have
been employed to extract information present in such physiologic time series.
All these methods exhibit different degrees of advantages and disadvantages, the
main concern being low specificity and accuracy.

Our interest is in the recently developed analytic tools based on nonlinear
dynamics theory and fractals. These are attractive because they have the ability
to perform a reliable local singularity analysis. For example, gait analysis [3]
and localization of outliers [4] have been performed using this approach. This
approach offers a new and potentially promising avenue for quantifying features
of a range of physiologic signals that differ [5] in health and disease.

Features detected using such approaches exhibit local hidden information
in time series and thus are suitable for classification. Support vector machine
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Fig. 1. A normal consistent P-QRS-T rhythm is exhibited on the left. Abnormal
rhythm for a patient in every alternate beat appears on the right.

(SVM) rigorously based on statistical learning theory simultaneously minimizes
the training and test errors. Apart from that, SVM produces a unique globally
optimal solution and hence is extensively used in diverse applications including
medical diagnosis.

In this work, we have developed a novel hybrid Hölder-SVM detection algo-
rithm for arrhythmia classification. We first pre-process a rhythm data series
to remove obvious noise patterns. Next, we compute wavelet coefficients at se-
lected scales and use them to compute local Hölder exponents and subsequently
pass selected points of the probability density curve of these exponents as input
features to a multi-class support vector machine for classification. Experiments
show the validity of our straightforward scheme.

The rest of the paper is organized as follows. In Section 2, we briefly describe
the methodology for computation of the local singularities and provide a short
introduction to SVM. Section 3 highlights our approach for classification along
with results achieved. We conclude with some final remarks in Section 4.

2 Local Hölder Exponents

For a time series f , if there exists a polynomial Pn of degree n < h and constant
C, such that:

|f(x) − Pn(x − x0)| ≤ C|x − x0|h (1)

the supremum of all exponents h(x0) ∈ (n, n+1) is termed the Hölder exponent,
which characterizes the singularity strength. It is evident [3] that the Hölder
exponent describes the local regularity of the function (or distribution) f . The
higher the value of h, more regular is the local behavior the function f . Thus it
characterizes the scaling of the function locally and the distinct scaling behavior
of different signals can be exploited to characterize and classify time series.

The wavelet transformation (WT) i.e. Ws,x0(f) provides a way to analyze the
local behavior of a signal f , which is a convolution product of the signal with
the scaled(s) and translated(x0) kernel. One of the main aspects of the WT is
the ability to reveal the hierarchy of (singular) features, including the scaling
behavior. This is formalized by its relation [6] with the Hölder exponent:

Ws,x0(f) ∝ |s|h(x0), s → 0 (2)

Fig. 2 shows an example of the WT and the Hölder exponents. We used the
second derivative of the Gaussian function, i.e. Mexican hat, as the analyzing
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Fig. 2. Sample ECG waveform, its wavelet transform and the corresponding local
Hölder exponents at first scale

wavelet. This wavelet is also extensively used by the other authors, since it
possesses good localization capabilities in both position and frequency.

Efficiency Considerations. As continuous WT in its original form is an ex-
tremely redundant representation, Mallat and Hwang [7] have come up with an
alternative approach called wavelet transform modulus maxima (WTMM). Here,
the computation of the hierarchical distribution of local behavior, as explained
above, can be effectively computed by considering the space-scale partitions.
The dependence of the scaling function on the moments q can be captured using
WTMM tree as:

Z(s, q) =
∑

Ω(s)

|Ws,x0(f)|q ∝ sτ(q) (3)

where Z(s, q) is the partition function and Ω(s) is the set of all maxima at the
scale s. The computation of singularity strength and the transformation from
τ(q) to spectrum of singularities D(h) is given by the Legendre transformation[8]:

h(q) = dτ(q)/ dq; D[h(q)] = qh(q) − τ(q) (4)

Stable Computation. The WTMM based formalism developed by Muzy [6]
as described above provides global estimates of scaling properties of time series.
Recently, it has been found that even though such global estimates of scaling is
often a required property, local analysis may provide more useful information.

In the traditional form, the estimation of local singularity strengths and
their spectra may not be possible due to the fact that in real life data, the
singularities are not isolated but densely packed. This causes the logarithmic rate
of increase or decrease of the corresponding wavelet transform maximum line to
fluctuate. But very recently, Struzik [9, 10] has provided a stable methodology
for estimating the local exponents, in which he has modeled the singularities as
if they were created through a multiplicative cascading process. This method
has been successfully applied for classification of human gait [3].

The method[10, 3] is as explained below. The mean Hölder exponent h is

given by log[M(s)] = h log(s) + C, where M(s) =
√

Z(s,2)
Z(s,0) . Employing the
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multiplicative cascade model, the approximate local Hölder exponent ĥ(x0, s) at
the singularity x0 can now be evaluated as the slope:

ĥ(x0, s) =
log(|Ws,x0(f)|) − (h log(s) + C)

log(s) − log(sN )
(5)

where sN is the length of the entire wavelet maxima line tree, that is, the max-
imum available scale that coincides with the sample length sN = N , and x0
belongs to the set Ω(s) of all wavelet maxima at the scale s that assume the
value Ws,x0(f). (In our calculations we used s=1 in the WT.)

2.1 Support Vector Machines

The local Hölder exponents are appropriate as the most informative features
for classification using the support vector machines (SVM)[11]. SVM is being
extensively used for several classification and regression applications. As the
theory is well developed, we provide only the basic ideas [12, 13] involved in
binary classification.

1. Transform the input data into a higher dimensional feature space to enable
linear classification; specifically define an appropriate kernel in the input
space in place of the dot product in the high dimensional feature space.

2. Maximize the margin of the linear hyperplane separating the instances be-
longing to the two classes by solving the dual formulation of the convex
quadratic programming problem to obtain the unique global solution for the
classifier.

For multi-class classification, we used popular One-Against-One method [14].

3 Results and Discussion

Data Set. The data set used was extracted from ECG recordings of MIT-BIH Ar-
rhythmia Database according to the beat and rhythm annotations. Each record
of these rhythms is at least 10 seconds long. Here, the complete dataset includes
160 of Normal sinus rhythm(NSR), 25 of Ventricular bigeminy (VB), 155 of Atrial
fibrillation (AF) and 146 of Nodal (A-V junctional) rhythm (NR) records. Out
of the whole dataset, 2/3rd of randomly selected data was used as the training
set and the remaining 1/3rd was used as the testing set.

For each of the extracted rhythms, we computed the features to be used by
SVM for classification in the following manner. First, we de-noised the data se-
ries using soft threshold wavelet method [15]. Then we computed the wavelet
coefficients using WTMM approach, which were subsequently used for the com-
putation of local Hölder exponents as explained in 2. We then computed the
probability density of these local Hölder exponents and then fitted this density
with Gaussian kernel. For all the rhythms belonging to different classes the local
Hölder exponents were in the range [-0.5:1.5]. We divided this range into 12 equal
sub-parts and chose 12 points (as shown in Fig. 3(a)) on the fitted probability
density curve corresponding to the mid-points of the 12 sub-ranges.
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Fig. 3. probability density of local Hölder
exponents

Table 1. confusion matrix (avg.case)

NSR VB AF NR
NSR 31.93 0.70 0.51 0.11
VB 0.62 3.69 0.18 0
AF 0.84 0 31.75 0
NR 0.48 0 0.15 29.01

Sensitivity
Avg 96.04 82.11 97.42 97.9
Best 98.29 100 99.23 99.20

Specificity
Avg 97.1 99.27 98.75 99.84
Best 98.89 100 99.63 99.64

Binary Classification. We considered NSR as the ‘normal class’ and all other
arrhythmias as ‘arrhythmia class’. We employed LIBSVM [16] toolbox for the
classification purpose and used radial basis function (RBF) as the kernel. Selec-
tion of other SVM parameters was done using cross-validation on training data.
Using multiple runs of 5-fold cross validation with chosen parameters, the over-
all accuracy of classifier model combinations ranged between 96% to 98%, and
which show average (and best respectively) classification for 96.3% (and 98.48%)
of normal class and 98.25%(and 98.89%) of arrhythmia class on the test set.

Multi-class Classification. For classification of four types of rhythms (for
which the probability densities vary as shown in Fig. 3(b)), again, the parameters
were tuned in the same way as explained in binary classification. The results show
overall 96.94% accuracy, and average (and best respectively) classification for
95.98% (and 98.89%) of NSR, 82.05% (and 100%) of VB, 98.51% (and 99.23%)
of AF and 98.92% (and 99.20%) of NR rhythms.

The results for multi-class classification can be summarized as the confu-
sion matrix of four classes and sensitivity & specificity of each class as given in
Table 1.

We also used the features derived from Fourier analysis, as mentioned in
introduction, with SVM classification for comparison with our method. Fourier
analysis(by selecting best 300 features) gives average correct classifications re-
spectively 86.48%, 89.33%, 95.7% and 96.74% for the above four classes. Hölder-
SVM methodology was found to provide superior performance. An interesting
point to note is that in both the binary and multi-class classification, we used
data provided by both sensing leads. It was observed that even if we use just a
single lead data, classification gives results with comparable accuracy. Arrhyth-
mia being a disorder in the normal rhythm, can thus be captured in any of the
two leads.

4 Conclusion

In this study, it is demonstrated that support vector machine in conjunction with
wavelet transform modulus maxima based local singularity feature extraction
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provides an excellent combination in arrhythmia classification. The recognition
of the normal and different types of rhythms representing the arrhythmias has
been done with a good accuracy. These investigations show that the presented
method may find practical application in the recognition of many more types of
arrhythmias.
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