
Feature Extraction for Nonlinear Classification

Anil Kumar Ghosh and Smarajit Bose

Theoretical Statistics and Mathematics Unit,
Indian Statistical Institute,

203, B. T. Road, Calcutta 700108, India
anilkghosh@rediffmail.com, smarajit@isical.ac.in

Abstract. Following the idea of neural networks, multi-layer statistical
classifier [3] was designed to capture interactions between measurement
variables using nonlinear transformation of additive models. However,
unlike neural nets, this statistical method can not readjust the initial
features, and as a result it often leads to poor classification when those
features are not adequate. This article presents an iterative algorithm
based on backfitting which can modify these features dynamically. The
resulting method can be viewed as an approach for estimating posterior
class probabilities by projection pursuit regression, and the associated
model can be interpreted as a generalized version of the neural network
and other statistical models.

1 Introduction

In high-dimensional classification problems, often a smaller number of features
(linear combination of measurement variables) contain most of the information
about class separability. Proper identification of these features helps to reduce
the dimensionality of the problem which in turn reduces the computational com-
plexity and storage requirement. If we restrict ourselves to linear classification,
results for feature extraction are available in the literature [6], [12], [9]. However
in practice, linear classifiers are often found to be inadequate and one needs
to extract relevant features for nonlinear classification. In regression, projection
pursuit model [7] was developed to compensate for this inadequacy, and artifi-
cial neural network models [14] provide much more flexibility for classification.
Both of them have their own strengths and limitations. In this article, we try to
combine these two approaches in order to develop an iterative feature selection
(IFS) method, which is more flexible and statistically meaningful.

2 Nonlinear Classification and IFS

In classification problems, one aims to achieve maximum accuracy in assigning
p-dimensional observations x into one of J competing classes. The optimal Bayes
rule [1] assigns an observation to the class with the largest posterior probabil-
ity. In practice, one estimates these unknown probabilities using the available
training data. Many nonparametric classification methods like neural nets [14]

S.K. Pal et al. (Eds.): PReMI 2005, LNCS 3776, pp. 170–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Feature Extraction for Nonlinear Classification 171

and classification using splines (CUS) [2] put the classification problem in a re-
gression framework and regress the indicator variables Y1, . . . , YJ (defined for
J classes) on the measurement space to estimate E(Yj | x) = p(j | x), the
posterior probabilities. CUS uses additive models to estimate these posteriors
and associated class boundaries. But in practice, these boundaries may be more
complex, and one needs to find suitable classification algorithms in such cases.
Bose [3] proposed the multi-layer statistical classifier (MSC), which uses the es-
timated posterior probabilities obtained by CUS as new features and repeats
the CUS procedure with them to get the final posterior probability estimates.
In the process, some interactions are indirectly introduced in the model which
helps to improve the performance of CUS. However, unlike neural nets, MSC can
not re-adjust the features selected by CUS. As a result, the improvement over
CUS is often not that significant. On the other hand, neural network training
algorithms try to re-adjust these features iteratively, but this popular method
lacks meaningful statistical interpretations.

This article presents an iterative feature selection (IFS) algorithm, which tries
to estimate the best possible features from the data and then performs CUS with
the extracted features to estimate the posterior probabilities. Backfitting is used
for dynamic feature adjustment, which makes the method more flexible. IFS
can be viewed as an approach to estimate the posterior probabilities p(j | x)
by projection pursuit regression model ψj(x) = φj0 +

∑p
i=1 φji(α

′

ix), where
φj0 is a constant, αi’s are feature directions and φji’s are smooth univariate
functions. IFS uses cubic splines as univariate functions φji and estimates αi,
φj0 and φji iteratively. Note that the additive model used in CUS is a special
case of IFS when αi’s are unit vectors along the co-ordinate axes. If sigmoidal
transformations are used as the smooth univariate functions, this model turns
out to be the popular perceptron model with one hidden layer. Since, our aim is
to extract low dimensional features for visualizing class separability, instead of
starting with too many features, here we restrict this number to the dimension
of the original measurement space.

3 Description of IFS Algorithm

Like neural nets, IFS regresses the indicators Y1, Y2, . . . , YJ on the measurement
variables. We take the eigen vectors of W−1(W+B) (where B and W are between
class and within class sum of square matrices respectively) as the initial feature
directions αi (i = 1, 2, . . . , p) and place K knots (based on order statistics) on
the range of each feature Zi = α

′

ix to construct the basis functions. Following
the idea of Breiman [4], we use the set of power basis functions {1, Zi, (Zi −
tk)3+, k = 1, 2, . . . , K; i = 1, 2, . . . , p} for fitting cubic splines. We regress
Yj (j = 1, 2, . . . , J) on these basis functions to get the initial estimates for
φj0, φj1, . . . , φjp. Posterior probability estimates Ŷjn = ψj(xn) and residuals
rjn = Yjn −Ŷjn , n = 1, 2, . . . , N (N being the training sample size) are computed
to find the residual sum of squares (RSS) =

∑J
j=1

∑N
n=1 r2

jn
.

172 A.K. Ghosh and S. Bose

Backfitting is used to re-adjust the features Z1, Z2, . . . , Zp iteratively. At
any stage αi is adjusted by a factor δi, where δi is obtained by minimizing
RSS �

∑J
j=1

∑N
n=1[rjn − δ

′

iη
(i)
jn

]2, where η
(i)
jn

= ∂φji

∂αi
|x=xn is computed using

the current estimates of αi and φji. This new estimate of αi is normalized and
Zi is recomputed. Knots are placed on its range to find the new basis functions.
Yj −

∑
k �=i φjk(Zk) is then regressed on these basis functions to get new estimates

of φj0 and φji (j = 1, 2, . . . , J). In this manner, all the p features (Z1, Z2, . . . , Zp)
are updated one by one. This step is repeated until no significant improvement in
RSS is observed over some consecutive iterations. At the end, Yj is regressed on
the resulting basis functions to get the final estimates for φj0, φj1, . . . , φjp (j =
1, 2, . . . , J). Like CUS, IFS puts no restriction on ψj (j = 1, 2, . . . , J) to ensure
that they are in [0, 1]. Imposing positivity restrictions by any manner results in
much more complicated but not necessarily better classification [13]. However,
inclusion of intercept terms φj0 (j = 1, 2, . . . , J) in the set of basis functions
guarantees the additivity constraint (

∑J
j=1 ψj(xn) = 1, ∀n = 1, 2, . . . , N).

After fitting the initial model using large number of knots, backward deletion
is used to delete the knots and hence the basis functions one by one. At any
stage, we delete the basis function whose deletion leads to least increase in
RSS. However, the linear basis function Zi (i = 1, 2, . . . , p) is not considered
as a candidate for deletion until all knots on that variable get deleted. This
backward deletion process is done by using a modified Gaussian sweep algorithm
[4]. It generates a sequence of nested models indexed by their dimensionalities.
To arrive at the final and parsimonious model, we adopt the cost complexity
criterion proposed in [5], where the ideal cost parameter is selected by 10-fold
cross-validation technique [14]. To explain local patterns of the measurement
space, the number of initial knots should be reasonably large. However, use of
too many knots may make the algorithm numerically unstable. Our empirical
experience suggests that 10 − 12 knots per variable is enough for a moderately
large sample size and the final result is not too sensitive on this choice.

4 Experimental Results

For illustration, we present the result of a two-class problem in five dimension,
where the first two measurement variables in the two classes are distributed as

Π1 : (X1, X2) ∼ N2(0, 0, 1, 1, 1/2) and Π2 : (X1, X2) ∼ U [−5, 5] × U [−5, 5].
Other three variables are i.i.d. N(0, 1) in both classes, and these variables are
used to add to the noise. Clearly, the optimal class boundary is of the form
X2

1 + X2
2 − X1X2 = C0 for some constant C0. This can be re-written (not

uniquely) as A{(X1 − 0.5X2)}2 + BX2
2 = C, where A, B and C are appropriate

constants. Thus, we see that only two linear features contain the information
about class separability. When we ran IFS algorithm on different sets of 500
observations generated from these two-classes, the final model contained exactly
two features in most of the cases. Figure 1 shows the estimated features and class
boundary for one such data set. Clearly, IFS could obtain appropriate estimates
of features and that of the optimal class boundary in this case.

Feature Extraction for Nonlinear Classification 173

0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

α

(a) Estimated features

−5 0 5
−5

0

5

Z
1

Z 2

(b) Estimated class boundary

Z
1
 Z

2

Fig. 1. Estimated features and class boundary

To compare the performance of IFS with other classification techniques like
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), ker-
nel discriminant analysis (KDA) [11], CUS, MSC and neural nets (as imple-
mented in [8]), we report the misclassification rates of these methods for this and
two other data sets. For kernel discriminant analysis, we standardize the obser-
vations in a class using the usual moment based estimate of the class dispersion
matrix to make the data cloud more spherical and then use same bandwidth in
all directions to find out the density estimate for the standardized data vector.
Density estimate at the original data point can be obtained from that using a
simple transformation formula when the measurement variables undergo a linear
transformation. Least square cross validation [15] is used to find the bandwidths
that minimize the mean integrated square errors of kernel density estimates
of different classes and those bandwidths are used for density estimation and
classification.

In our second simulated example, each class is an equal mixture of two bivari-
ate normal populations. The location parameters for components of class-1 are
(1, 1) and (3, 3), whereas those for class-2 are (2, 2) and (4, 4). All components
have the same scatter matrix 0.25I. For both of these examples, we used training
sets of size 500 and test sets of size 3000 taking equal number of observations
from each class. In each case, we repeated the experiment 10 times, and the av-
erage test set error rates over these 10 trails are reported in Table-1 along with
their corresponding standard errors. Since these are simulated examples, one can
also plug-in the true densities of the two populations in the Bayes rule to classify
the observations. In Table-1, we also present the average misclassification rates
of this optimal Bayes classifier for these two examples with their corresponding
standard errors. For the third example, we consider a benchmark data set related
to a vowel recognition problem (available at http://www.ics.uci.edu), where we
have 10 dimensional observations from 11 different classes. This data set has
specific training and test sets, and we report the test set error rates of different
methods in Table-1. In Example-2 and Example-3, IFS led to the best perfor-
mance among the classifiers considered here. Misclassification rates for different

174 A.K. Ghosh and S. Bose

Table 1. Misclassification (in %) rates for different classification methods

Example-1 Example-2 Example-3
Optimal 10.74 (0.14) 12.08 (0.19) —
LDA 49.98 (0.33) 45.23 (0.57) 55.63
QDA 11.61 (0.17) 45.44 (0.54) 52.81
KDA 12.43 (0.16) 12.68 (0.23) 62.12
CUS 14.30 (0.27) 18.35 (0.41) 51.30
MSC 14.02 (0.28) 18.54 (0.40) 45.67
Neural Net 12.48 (0.19) 12.58 (0.21) 48.92
IFS 11.88 (0.22) 12.38 (0.18) 43.29

types of kernel methods and other nonparametric classifiers on vowel recogni-
tion data are available in [12] and [10]. Results of our proposed method is better
than those reported error rates. Since the optimal class boundary in Example-1
is quadratic, QDA is expected to perform well, but IFS could nearly match the
performance of QDA.

It is difficult to find out the expression for computation complexity of IFS
algorithm. Since IFS is an iterative algorithm, in addition to depending on the
sample size, number of classes and number of basis functions, the computing time
depends on the closeness of the initial and final solution and the convergence
criterion as well. However, as a nonparametric classifier IFS works reasonably
fast. When 10 knots are used on each of the 10 variables in vowel recognition
data, it took nearly 30 minutes on a pentium 4 machine for model selection and
classification. Note that we had to run IFS algorithm 11 times including 10 times
for cross-validation. We terminated the iteration in IFS if the relative change in
RSS is less than 0.1% over 10 consecutive iterations. Of course, one can relax this
convergence criterion to cut down the computing time. The overall performance
of IFS turned out to be excellent which should be explored and tested further.

References

1. Anderson, T. W. (1984) An Introduction to Multivariate Statistical Analysis. Wiley,
New York.

2. Bose, S. (1996) Classification using splines. Comp. Statist. Data Anal., 22, 505-525.
3. Bose, S. (2003) Multilayer Statistical Classifiers. Comp. Statist. Data Anal., 42,

685-701.
4. Breiman, L. (1993) Fitting additive models to regression data: diagnostics and

alternating views. Comp. Statist. Data Anal., 15, 13-46.
5. Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification

and Regression Trees. Wadsworth and Brooks Press, Monterrey, California. .
6. Duda, R., Hart, P. and Stork, D. G. (2000) Pattern classification. Wiley, New York.
7. Friedman, J. and Stuetzle, W. (1981) Projection Pursuit Regression. J. Amer.

Statist. Assoc., 76, 817-823.
8. Ghosh, A. K. and Bose, S. (2004) Backfitting neural networks. Computational

Statistics, 19, 193-210.

Feature Extraction for Nonlinear Classification 175

9. Ghosh, A. K. and Chaudhuri, P. (2005) Data depth and distribution free discrim-
inant analysis using separating surfaces. Bernoulli, 11, 1-27.

10. Ghosh, A. K., Chaudhuri, P. and Sengupta, D. (2005) Multi-scale kernel discrim-
inant analysis. Proceedings of Fifth International Conference on Advances in Pat-
tern Recognition (ICAPR-03) (Ed. D. P. Mukherjee and S. Pal), Allied Publishers,
Kolkata, pp. 89-93.

11. Hand, D. J. (1982) Kernel Discriminant Analysis. Wiley, Chichester.
12. Hastie, T., Tibshirani, R. and Friedman, J. H. (2001) The elements of statistical

learning : data mining, inference and prediction. Springer Verlag, New York.
13. Kooperberg, C., Bose, S. and Stone, C. J. (1997) Polychotomus regression. J. Amer.

Statist. Assoc., 92, 117-127.
14. Ripley, B. D. (1996) Pattern recognition and neural networks. CUP, Cambridge.
15. Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis.

Chapman and Hall, London.

	Introduction
	Nonlinear Classification and IFS
	Description of IFS Algorithm
	Experimental Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

