
S.K. Pal et al. (Eds.): PReMI 2005, LNCS 3776, pp. 786 – 791, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Decision Tree Induction with CBR

B. Radhika Selvamani and Deepak Khemani

A.I. & D.B. Lab, Dept. of Computer Science & Engineering,
I.I.T. Madras, India

bradhika@cs.iitm.ernet.in, khemani@iitm.ac.in

Abstract. This paper describes an application of CBR with decision tree induc-
tion in a manufacturing setting to analyze the cause for defects reoccurring in
the domain. Abstraction of domain knowledge is made possible by integrating
CBR with decision trees. The CID approach augments the recall and reuse done
by CBR with statistical analysis that is focused towards the discovery of con-
nections between specific defects and their possible causes. We show that this
discovery also gives a pointer towards a corresponding corrective action.

1 Introduction

In most domains we can acquire the initial seed cases from the experts, documents or
databases in the domain. However such a case base may fail to respond to a query due
to: (1) Lack of adequate coverage (2) Presence of noisy cases (3) Occurrence of a
novel case. The problem of case coverage may be solved over time when the experts
update the case base periodically. Instance-based learning (IBL) is a carefully focused
case-based learning approach that contributes evaluated algorithms for selecting good
cases for classification, reducing storage requirements, tolerating noise and learning
attribute relevances. Handling noisy instances has been widely explored in the IBL
framework [1,2]. Occurrence of a novel case can be viewed as a gap in the case base.
That is, a query case may find a similar case in the case base, but the retrieved case
may be incomplete for solving the given problem. The case needs to be completed
with the appropriate solution before it contributes to the case base. Traditional process
of reminding as in CBR cannot address the problem at hand. The domain expert may
complete an incomplete case after analysis. Other machine learning techniques like
case adaptation, decision trees [7], data mining [4] etc., can be combined with CBR
[3,10] to handle the problem. One such situation is that in which diagnosis of a fre-
quently occurring fault has to be done. The fault may not have a corrective action
identified, or the corrective action in current practice may not be working anymore. In
the absence of a well-defined underlying theory, the first step in diagnosis would be
the identification of possible parameters that could be causally linked to the fault.
This task can be done by a statistical analysis of the past data, and it has been pro-
posed as the construction of a Cause Induction in Discrimination Tree (CID Tree) [8].
We apply the technique to a real world problem from the manufacturing domain1. The
paper is organized as follows. The earlier work relating induction with CBR has been

1 This research work has been supported by a grant from Tube Products Investments, Car-

borundum Universal Ltd., Madras, India.

 Decision Tree Induction with CBR 787

discussed. The domain where the algorithm has been applied and the experimental set
up are explained. Finally the results obtained and the conclusions are given.

2 Domain

The domain is manufacturing steel strips. The raw material is in the form of a coil that
passes through various process departments as follows. The pickling department first
treats the coil with acid. The coils are then cut into strips of required length and width
in the slitting department. The strips are reduced to the required thickness by drawing
the steel sheets through a number of passes in a cold roll mill (CRM). Then the strips
are subjected to annealing. Tests are done on the strips to check if they satisfy the re-
quired physical and mechanical properties. The parameters affecting the final product
are the chemical properties of the raw coil used, the preprocessing parameters, the
load and pressure parameters during drawing and the annealing parameters. The final
steel sheets may have various defects like scratches, edge cracks, dent punch etc.
When a defect is found, the strip is remade with modified parameters.

A CBR system was installed to capture the case history in the domain. All the
cases manufactured are added to the case base. The case base evolves with each in-
stance of manufacturing. Whenever a defect is seen, the case base is consulted for
remedies. If no case is found, the defective case is added to the case base after appro-
priate analysis on the defect. The aim of the current work is to help the experts ana-
lyze the defects when the CBR system lacks the required information explicitly.

2.1 Case Structure

The cases are sought for a solution whenever there occurs a defect in the products.
The problem space of the case is made up of the design attributes, the process pa-
rameters and the defect description. The solution space consists of possible remedies,
which are suggested changes to the process parameters. The solution hence depends
on the context provided by the problem space. A case is incomplete when it describes
a defective with no corresponding solution. A case without a solution has no utility
and hence considered a gap. The aim is to provide the experts with a set of sugges-
tions to complete these cases and thus eliminate the gaps in the system

3 CBR with Cause Induction

CBR with cause induction algorithm CID Tree [8,9] was applied in the domain.
The CIDTree method has two phases. The construction of the discrimination tree
based on defect clusters constitutes the first phase and the induction process the
second phase. During the first phase, the cases are labeled as good or bad based
on the presence or absence of the defect to be analyzed. The labeled cases are
then used in building up a discrimination tree (We used c4.5 induction algorithm
for the experiments). Investigating the possible causes for the defect forms the
second phase of the method. The aim of the analysis is to select a pair of nodes
under the same parent, such that each has high importance with respect to the al-
ternative classes (Good, Bad). One can observe that if there were a single identifi-

788 B.R. Selvamani and D. Khemani

Fig. 1. Distribution of Cases at the Nodes

Node P

 Root

Sibling Node S

N,

Np, Ns,

able cause for the defect in the case records then it would show up at the root of a
three-node induction tree. The fact that in practice the induction trees are layered
implies that this is not the case. In this situation, the CID algorithm inspects the
tree to locate the most likely cause or causes for the given defect. The data is pre-
sumably noisy as well. The relevance score for each node P in causing the defect
is calculated as follows. Scorep=(Dp2*Ns2)/(Np2*Ds2)

Np,Dp are the number of
good and bad cases under the
node P.

Ns,Ds are the number of
good and bad cases under the
sibling node S.

N, D are the numer of good
and bad cases present at the
root.

Note that relevance score de-
pends only upon the number of
cases under the two nodes. It is
high when the node P has rela-

tively high number of defective cases compared to S. If P has more than one sib-
ling, their numbers are clubbed into the parameters Ns and Ds.

3.1 Relevance of the Node

A node represents a pattern observed among the instances, which is the path of
the node from the root (Fig.1). A decision tree holds all patterns that provide bet-
ter classification accuracy within an optimum height. The number of defec-
tive/good instances classified under a node can be used to measure the support
and confidence of the pattern causing a defective/good case. Let P be a node rep-
resenting a pattern, the alternative pattern formed by changing the last decision is
the sibling node S. We look at the statements (P => Defect), which is to be read as
node P is the cause of the defect and (P=>Good) read as P reduces defects.

Support(P => Defect) : Fraction of defects under node P over all cases = Dp/(N+D). (1)
 Confidence(P=>Defect) : Fraction of defects among those under the node P=Dp/(Np+Dp) (2)
Support (P => Good) : Fraction of good cases under node P over all cases = Nn/(N+D). (3)

 Confidence(P=>Good): Fract. of good cases among those under the node P = Np/(Np+Dp). (4)

Maximize support and confidence (P => Defect):

 Dp
2 / (N+D) * (Np+Dp) . (1x 2)

Minimize support and confidence (P => Good):

 Np
2 / (N+D) * (Np+Dp) . (3 x 4)

Minimize support and confidence (S => Defect):

 Ds
2 / (N+D) * (Ns+Ds) . (5)

 Decision Tree Induction with CBR 789

Maximize support and confidence (S => Good):

 Ns
2 / (N+D) * (Ns+Ds) . (6)

Relevance of Node P in causing the defect

 Dp
2Ns

2/Ds
2Np

2 . (1x2 x 6 / 3x4 x 5)

Score(P=>Defect): (Dp
2Ns

2 + residue) / (Ds
2Np

2+residue)

Score(P=>Good) : 1/Score

We have avoided division by zero by adding a residue to the formula.
Earlier work to convert decision trees to rules focused on extracting more compre-

hensive structures from the tree preserving the accuracy of classification [7]. We are
extracting the patterns those are more relevant with respect to the defect used to label
the instances. In our earlier work [8,9] we had tried out the algorithm with defects in a
refractory blocks manufacturing setting [5,6]. The induction tree classifying the de-
fects in the case base was instrumental in the diagnosis process. The correlations sug-
gested by the trees were in agreement with the experts’ intuitions in creating trials
during failures. These are rules, which extracted the domain knowledge from the col-
lected cases. The experiments, done on the steel strips manufacturing domain, are de-
scribed in the following section.

4 Experiments

Data was obtained for 130 parameters from the domain. We have 1168 records from
the domain and have done the analysis for three different types of defects namely
scratch, edge cracks and dent punch. There were 231 records with scratches, 16 re-
cords with edge cracks and 51 with dent punch. The attributes Si (silicon) and others1
(other chemicals) are chemical characteristics of the raw material, the attributes A, B,
C are the different vendors (names changed) of raw materials, CRMPasses is the
number of times the sheet is passed through the CRM mills to reduce the thickness.
The cases were labeled as D-defective case and N-Good case, based on the occurrence
of the particular defect in the case to be analyzed.

4.1 CBR C4.5 and CID

The primary goal of the CBR implementation is to suggest process changes when
there occurs a defect. When the CBR has cases, which do not provide any solution
there is a gap in the system. The system retrieves cases based on the similarity of the
problem, but lacks information to solve the problem. The case completion requires
acquiring a solution for the problem. Note that all cases have defect description as
part of the problem space, which is used to label the cases for induction There is
enough information available for building the decision tree though cases are incom-
plete in the case base. The decision tree obtained using C4.5 is in Fig 2. Now to ob-
tain a solution for a particular defect, we obtain the prominent patterns from the c4.5
using CID scoring. The results are shown in the Table1. This information when added
to the cases, which have the particular defect, fills the gap in the system.

790 B.R. Selvamani and D. Khemani

root

Total (231, 937)

Other1<=0(227, 853)Other1>0(4, 82)

S1P1
Si>0.1 (4, 107)Si<=0.1(223,

P2 Source=D (5, 16)
Source= B (4, 81)

S2

Source=C (12, 5)Source =A (164, 504)

CRMPass<=5 (120, 241) CRMPass>5(44, 63)

Fig. 2. Analysis of scratch in strips manufacturing

Table 1. The Scores Obtained by CID

Attribute D N Scor 1/Sc
Others 231.3 936.7 0 0
Other1<=0 227.4 853.6 33.6 0
Other1 > 0 3.8 83.2 0 33.6
Si<= 0.1 223.4 746.3 62.0 0
Si > 0.1 4.1 107.3 0 62.0
Source =A 164.3 504.8 1.8 0.6
Source = B 3.8 81.2 0 49.1
Source = C 11.4 4.6 73.5 0
Source =D 4.8 15.8 1.1 1
CRMPass<=5 120.5 242.0 8.9 0.1
CRMPass>5 43.8 262.7 0.1 8.9

4.2 Results

The objective is to learn the causes for certain defects from the cases collected in the
case base to complete the cases without solution. The incomplete cases may be filled
up with their respective solutions based on the results obtained from the algorithm.
Scratches

 If the raw material for the sheet had silicon < 0.1 % then there were more
scratches. The experts agreed upon this. (Shown as P1 and S1 in Fig. 2).

 The algorithm also identified that raw materials purchased from sourceB had less
scratches and that from C had more (shown as P2 and S2 in Fig. 2).

Cracked Edges
 Similarly %carbon being less was found to be the cause for cracked edges.

Dent Punch
 Analysis on dent punch showed that pass2thickness being less (mechanical prop-
erty) caused the defect. But dentpunch is known to occurr due to use of defective
raw material (chemical property). The nonconforming results were attributed to
the scratch data being misclassified as dentpunch.

In the above experiment the experts could suggest a change in source raw material for
better results in cases with scratches. Better classification of the defects scratch and
dentpunch may avoid erroneous cases.

5 Conclusions

Case Based Reasoning is built on the foundation of accumulating experience and re-
using it to solve problems. Traditionally this reuse is direct, in the sense that the most
similar case or a set of k most similar cases are retrieved and used directly. But com-

 Decision Tree Induction with CBR 791

bined with other machine learning techniques a case base can yield more information
by looking at some level of abstraction. Machine learning has been used in case ac-
quisition and in indexing [11]. In this paper we demonstrate that a decision tree learnt
to separate defective cases from non-defective cases can be used to identify attributes
whose value choices could be the causes of defects. The few experiments we have
done with limited data corroborate the findings. As more data accrues, we hope that in
future we will develop techniques that would help shop floor personnel choose effec-
tive corrective actions when faced with previously unsolved defect problems. Closing
the feedback loop in CBR [12] is very important in managing the flow in a domain
using CBR. Our future work is towards generating trial cases when the case base
lacks enough domain expertise. After the remedy in the trial case is tested on the shop
floor, the case can be stored permanently in the case base.

References

1. Aha, D.W., Kibler, D., Albert, M. K. Instance Based Learning Algorithms, Machine
Learning, 6:37-66, 1991.

2. Cost S. Salzberg. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic
Features, Machine Learning, 10:57-78, 1993.

3. Janet Kolodner. Case-Based Reasoning, Morgan Kaufmann Publishers, 1993.
4. Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques, Morgan

Kaufmann Publishers, 2001.
5. Khemani, D., Radhika Selvamani, B., Ananda Rabi Dhar, Michael S.M. InfoFrax: CBR in

Fused Cast Refractory Manufacture. In proceedings on the European Conference on Case
Based reasoning, Lecture Notes in Computer Science 2416 Springer, 560 – 574, 2002.

6. Michael, S. M., and Khemani D. Knowledge Management in Manufacturing Technology.
In Proceedings of the International Conference on Enterprise Information System, Ciudad
Real, Spain, Vol. I, 506-512, 2002.

7. Quinlan, J.R., C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,
1993.

8. Radhika Selvamani, B., Deepak Khemani. Investigating Cause for Failures in Discrimina-
tion Tree from Multiple Views. In the proceedings of the International Conference of
Knowledge Based Computer Systems, Mumbai December 11-14, 2002.

9. Radhika Selvamani, B., Deepak Khemani. Managing Experience for Process Improvement
in Manufacturing. In the proceedings of the International Conference of Case Based Rea-
soning ICCBR-2003. Trondheim Norway, June 23-26, 2003.

10. Watson, I., Applying Case Based Reasoning: Techniques for Enterprise Systems, Morgan
Kaufmann Publishers, 1997.

11. Patterson, D., Anand, S S., Dubitzky, W., Hughes, J G. : Towards Automated Case
Knowledge Discovery in the M2 Case-Based Reasoning System. In Knowledge and In-
formation Systems: An International Journal. Springer Verlag, Vol. 1 61-82, 1999.

12. Price, C.J., Pegler, I.S. Ratcliffe, M.B. and McManus, A. From troubleshooting to process
design: closing the manufacturing loop. In proc. 2nd International Conference, ICCBR-97,
Providence, Rhode Island, USA, Lecture Notes in Computer Science 1266 Springer, 1997.

	Introduction
	Domain
	Case Structure

	CBR with Cause Induction
	Relevance of the Node

	Experiments
	CBR C4.5 and CID
	Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

