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Abstract. In this paper a new method for edge detection in grayscale
images is presented. It is based on the use of the Kohonen self-organizing
map (SOM) neural network combined with the methodology of Canny
edge detector. Gradient information obtained from different masks and
at different smoothing scales is classified in three classes (Edge, Non Edge
and Fuzzy Edge) using an hierarchical Kohonen network. Using the three
classes obtained, the final stage of hysterisis thresholding is performed
in a fully automatic way. The proposed technique is extensively tested
with success.

1 Introduction

Changes or discontinuities in an image amplitude attribute such as intensity
are fundamentally important primitive characteristics of an image because they
often provide an indication of the physical extent of objects within the image.
The detection of these changes or discontinuities is a fundamental operation in
computer vision with numerous approaches to it.

Marr and Hildreth [3] introduced the theory of edge detection and described
a method for determining the edges using the zero-crossings of the Laplacian
of Gaussian of an image. Canny determined edges by an optimization process
[1] and proposed an approximation to the optimal detector as the maxima of
gradient magnitude of a Gaussian-smoothed image. Lily Rui Liang and Carl G.
Looney proposed a fuzzy classifier [2] that detects classes of image pixels cor-
responding to gray level variation in the various directions. A fuzzy reasoning
approach was proposed by Todd Law and Hidenori Itoh [g], in which image fil-
tering, edge detection and edge tracing are completely based on fuzzy rules. The
use of self-organising map and the Peano scan for edge detection in multispec-
tral images was proposed by P.J. Toivanen and J. Ansamaki [5]. In [I0], Pihno
used a feed-forward artificial neural of perceptron-like units and trained it with
a synthetic image formed of concentric rings with different gray levels. Weller
[11] trained a neural net by reference to a small training set, so that a Sobel
operator was simulated. In Bezdek’s approach [12], a neural net is trained on
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all possible exemplars based on binary images, with each windowed possibility
being scored by the (normalised) Sobel operator.

Among the various edge detection methods proposed so far, the Canny edge
detector is most widely used due to its optimality to the three criteria of good
detection, good localization, and single response to an edge.

In this paper a new edge detection technique is proposed which improves the
canny edge detection the following way:

— Utilizes edge information extracted not only from one edge detection masks
but from a number of different masks.

— Uses Kohonen SOM in order to obtain three main classes of edges (Edge,
Fuzzy-Edge, Non-Edge) that are next used to automatically obtain the final
edge pixels according to the Canny’s hysterisis thresholding procedure.

The proposed technique is extensively tested with many different types of
images and it is found that it performs satisfactory even with degraded images.

2 Overview

A typical implementation of the Canny edge detector follows the steps below:

1. Smooth the image with an appropriate Gaussian Filter to reduce noise.

2. Determine gradient magnitude and gradient direction at each pixel.

3. Suppress non edge pixels with non maximum suppression. If the gradient
magnitude at a pixel is larger than those at its two neighbors in the gradi-
ent direction, mark the pixel as an edge. Otherwise, mark the pixel as the
background.

4. Remove the weak edges by hysteresis thresholding.

The first step of the Canny edge detector is the gaussian smoothing. Gaus-
sian filters are low-pass filters and thus apart from filtering the noise they also
blur an image. The Gaussian outputs a ‘weighted average’ of each pixel’s neigh-
borhood, with the average weighted more towards the value of the central pixels.
The degree of smoothing is determined by the standard deviation of the filter.
Filtering an image with a gaussian does not preserve edges. Larger values of
standard deviation correspond to images at coarser resolutions with low detail
level.

After the image filtering, the next step is the determination of the image
gradient. The simplest method to compute the gradient magnitude G(j, k) refers
to the combination of row Gg(j, k) and column G¢(j, k) gradient. The spatial
gradient magnitude is given by:

G(j, k) = /Gc(j. k)2 + Gr(j, k)2 (1)

and the orientation of the spatial gradient with respect to the row axis is:

0(j, k) = arctan { 2282 :; } (2)
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The discrete approximation of Gr(j, k) and G¢(j, k) can be given by the
pixel difference, separated by a null value [9] :

GR(jvk):P(j7k+1)_P(j7k_1) (3>

GC(]ak) :P(]*lak)ip(j‘i’l,k) (4)

The separated pixel difference is sensitive to small luminance fluctuations
in the image and thus it is preferred to use 3 x 3 spatial masks which perform
differentiation in one coordinate direction and spatial averaging in the and or-
thogonal direction simultaneously. The most widely used masks are the Sobel,
Prewitt and Frei-Chen operators. As show in figures [I] and 2] these masks have
different weightings, in order to adjust the importance of each pixel in terms
of its contribution to the spatial gradient. Frei and Chen have proposed north,
south, east, and west weightings so that the gradient is the same for horizontal,
vertical, and diagonal edges, the Prewitt operator is more sensitive to horizontal
and vertical edges than to diagonal edges and the reverse is true for the Sobel
operator.
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Fig. 1. Row gradient masks: (a) Sobel (b) Prewitt (c) Frei-Chen
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Fig. 2. Column gradient masks: (a) Sobel (b) Prewitt (c) Frei-Chen

Hysterisis thresholding uses a high threshold T},;4n, and a low threshold i,
which both are user-defined. Every pixel in an image that has gradient magnitude
greater than Th;gp or less than Tj,, is presumed to be an edge or a non-edge
pixel respectively. Any other pixel that is connected with an edge pixel and has
gradient magnitude greater than T}, is also selected as edge pixel. This process
is repeated until every pixel is marked as edge or non edge pixel. In terms of
clustering, by selecting the two thresholds, the image pixels are grouped in three
clusters : Edge cluster, non-edge cluster and fuzzy-edge cluster with fuzziness
defined by means of spatial connectivity with edge pixels.

The basic idea of this work is to automate the edge map clustering using the
Kohonen self-organizing map. As described previously in this section, gradient
depends on the size of the gaussian filter and the differentiation operator . Thus
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it is more robust to create a feature space with gradient information obtained
from different masks and at different detail levels of the image and represent the
gradient magnitude in a vectorial form and not with a scalar value.

2.1 Kohonen SOM Neural Network

The Kohonen SOM is a neural network that simulates the hypothesized self-
organization process carried out in the human brain when some input data are
presented [4]. The Kohonen network consists of two layers. The first layer is
the input layer and the second is the competition layer in which the units are
arranged in a one or two dimensional grid. Each unit in the input layer has a
feed-forward connection to each unit in the competition layer. The architecture
of the Kohonen network is shown in figure Bl The network maps a set of input
vectors into a set of output vectors (neurons) without supervision. That is, there
is no a-priori knowledge of the characteristics of the output classes. The training
algorithm is based on competitive learning and is as follows :

1. Define of the desired set A of output classes c¢;
A:{Cl,...,CN} (5)

and the topology of the competition layer neurons.

2. Initialize output units ¢; with reference vectors w., chosen randomly from a
finite data set D = {dy,...,da} and set the time parameter ¢ = 0.

3. Present an input vector d and find the winner output neuron s(d) = s:

s(d) = arg mineea ||d — we| (6)
4. Adapt each unit ¢ according to
Aw, = €(t)hsp(s — we) (7)

Y1

Y2
Xz
Ys
X3
Y4
Input Competitive
Layer layer

Fig. 3. Architecture of the Kohonen Self-Organising Map
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where €(t) is the function that controls the learning rate and hgp, the func-
tion that defines the neighborhood units of the winner neuron that will be
adapted. For the learning rate in this work we used the function:

€(t) = €initial ( final ) (8)

€initial

and as a neighborhood function the gaussian :

Ho, = eap (”C S”) (9)

202

with standard deviation varied according to

iy
o(t) :amml( f““”) (10)

Oinitial
Repeat steps 3 and 4 until all the vectors of the training dataset D are

presented to the network.
Increase the time parameter:

t=t+1; (11)

If t < tyqe continue with step 3.

Description of the Method

As shown in figure [, the proposed edge detection method consists of two parts.

The first one follows the the three first steps of the Canny edge detector.

Firstly we smooth the grayscale image I with an appropriate Gaussian Filter of
standard deviation o.entrqr in order to reduce image noise. We call the smoothed
image Ic. Then we calculate gradient magnitude and direction using the So-

bel

operator and perform non maximum-suppression. Every pixel with gradient

magnitude greater than zero is set 0 (edge) and all the other pixels are set to
255 (non-edge). This process leads to a single-pixel width binary edge map M.
The second part is the classification of images pixel into three clasees (Edge,
Non-Edge, Fuzzy Edge). We separately smooth the original grayscale image I

Gaussian | Gradient » | Non Maximum
Smoothing "] Detection "] Suppression
Grayscale Hysterisis
Image Thresholding | 7| dge Map
E Feat
dge Feature | KSOM
Space ”|  Clusterin

Generation 8

Fig. 4. Flowchart of the proposed method



Automatic Edge Detection 959

with a gaussian filter of standard deviation oy, and opign. The values of g4y
and opign: have a small deviation above and below ocepnter respectively in order
to create different detail levels but also avoid the problem of edge dislocation.
For each of these three smoothed images Iy, Ic and Iy, we compute the gra-
dient magnitude using Sobel,Prewitt, Frei-Chen and Separated Pixel Difference
operator.

For every pixel P of the image I we assign a 12-component vector. Each
vector’s element represents gradient magnitude from different combination of
smoothing scale and differentiation mask. This process produces a 12-dimension
feature space D, which will be sampled in order to train the Kohonen SOM.

As shown in figure Bl we approach the clustering process in a hierarchical way,
which has been carried out after a large number of experiments.

At the first level, we use a Kohonen map with three output units connected in
line topology. These output units represent three clusters: high,medium and low
gradient class. The training dataset for the Kohonen map consists of randomly
choosen vectors of the input space D. After the training of the Kohonen network
we assign each pixel of the image to one of the output classes according to the
euclidean distance between the pixel’s vector in feature space D and the vectors
of the SOFM output units.

At the second level, all the pixels that are mapped into the high and medium
gradient class are grouped in order to form the Edge Pixel class. The Low Gradi-
ent class is splitted in two classes: the Fuzzy-Edge Pixel class and the Non-Edge
Pixel class, using a Kohonen map with the same topology as the one at the first

Sobel

Ohigh

Prewitt
Grayscale

L O'center
Image
Olow

High Gradient
Class
Medium Gradient
Class

Low Gradient
Class

KSOM

Frei-Chen

AT v A v v v av. v v aw v, v

Pixel Diff

Edge Pixel
Class
Fuzzy Edge Pixel
Class

Non-Edge Pixel
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KSOM

Fig. 5. Flowchart of the clustering process
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level but with two output units. All the pixels that were mapped into the Low
Gradient class on the first level, are now assigned at these two classes.

The next step of the method is the hysterisis thresholding in a revised way. By
integrating the information of the pixel class labeling performed in the previous
step, there is no need for the user-defined thresholds 7}, and T};qn. Hysterisis
thresholding is summarized as follows:

1. Mark as Non-Edge class pixel, every pixel that is marked as non-edge (255)
in the binary edge map M.

2. Select a pixel P that belongs to the Edge class.

3. Every pixel that is connected with 8-neighborhood with P and belongs to
the Fuzzy-Edge class is marked as edge pixel(0) and it is classified into the
Edge class.

4. Repeat step 2 for all pixels of the Edge-class.

5. The remaining Fuzzy-edge class pixels are classified into the Non-edge class
and marked as non-edge pixels (255).

4 Experimental Results

The method analysed in this paper is implemented in visual enviroment (Borland
Delphi) and tested on several images with satisfactory results. For an AMD
Athlon 64 (2GHz) bazed PC with 512 MB RAM, the processing time for a
512 x 512 image with a Kohonen Som network trained for 300 epochs with 1000
samples, was 2.55 seconds. Edges extracted with the proposed method are shown
in figure [0 In [B(b) we have the binary edge map M after gaussian smoothing
with ocentrair = 1, gradient detection with the sobel operator and non-maximum
suppression. In[Bl(c) we can see the result of the classification using the Kohonen
SOM. Pixels classified to the Non-Edge class are shown in black color. Red
coloured pixels are the pixels that belong to the Edge class and the pixels of
the Fuzzy-edge class are shown in green color. The parametres of the Kohonen
maps for these examples are: ¢; = 0.9, ey = 0.01 and T}q, = 400 with training
vectors from an input space formed as described previously with g;,, = 0.8 and
Ohigh = 1.2. The final edges exctracted with automatic hysterisis thresholding
are shown in [6] (d). Two additional examples are shown in figures[fl and 8

In order to have some comparative results, our technique was tested against
the results of objective edge evaluation and detector parameter selection method
proposed in [6]. In this work, Yitzhak Yitzhaky and Eli Peli propose a statistical
objective performance analysis and detector parameter selection method, using
detection results produced by different parameters of the same edge detector.
Using the correspondence between the different detection results, an estimated
best edge map, utilized as an estimated ground truth (EGT), is obtained. This
is done using both a receiver operating characteristics (ROC) analysis and a
Chi-square test. The best edge detector parameter set (PS) is then selected by
the same statistical approach, using the EGT. This method was implemented in
Matlab for the canny edge detector.
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For the tests we used six ground truth images from the GT dataset used in
[7] which is freely available on the internet. In figure[@ we see the test images and
corresponding ground truth images. In these manually created GT images black
represents edge, gray represents no-edge and white represents dont care. The
GT is created by specifying edges that should be detected and regions in which
no edges should be detected. Areas not specified either as edge or as no-edge
default to dont-care regions. This makes it practical to specify GT for images
that contain regions in which there are edges but their specification would be
tedious and error-prone (for example, in a grassy area) [7]. The results of the
pixel based comparison between the ground truth and the edge images were
based on the following values:

— True positives (TP): Number of pixels marked as edges, which coincide with
edge pixels in the GT.

— False positives (FP): Number of pixels marked as edges, which coincide with
non-edge pixels in the GT.

— True negatives (TN): Number of pixels marked as non-edges, which coincide
with non-edge pixels in the GT.

— False negatives (FN): Number of pixels marked as non-edges, which coincide
with edge pixels in the GT.

() (d)

Fig. 6. (a) Original grayscale image, (b) Binary edge map M after smoothing differenta-
tion and non-maximum suppression, (c¢) Edge classes obtained by Kohonen SOM (d)
Final edge map after automatic hysterisis thresholding
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(c) (d)

Fig. 7. (a) Original grayscale image, (b) Binary edge map M after smoothing differenta-
tion and non-maximum suppression, (c¢) Edge classes obtained by Kohonen SOM (d)
Final edge map after automatic hysterisis thresholding

() (d)

Fig. 8. (a) Original grayscale image, (b) Binary edge map M after smoothing differenta-
tion and non-maximum suppression, (¢) Edge classes obtained by Kohonen SOM (d)
Final edge map after automatic hysterisis thresholding
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Fig. 9. Images used for pixel-based evaluation

The calculation of these values is performed as follows: if a detector reports
an edge pixel within a specified tolerance T}, qtcn of an edge in the GT, then it is
counted as a true positive (TP) and the matched pixel in the GT is marked so
that it cannot be used in another match. The Tmatch threshold for tolerance in
matching a detected edge pixel to GT allows detected edges to match the GT
even if displaced by a small distance [7]. In our test we used a value of Tmatch =
1. If a detector reports an edge pixel in a GT no-edge region, then it is counted
as a false positive (FP). Edge pixels reported in a dont care region do not count
as TPs or FPs. Background pixels that match pixels in a GT no-edge region are
counted as true negatives (TN). Background pixels that match GT edge pixels
are counted as false negatives (FN).

For the pixel-based comparison, these similarity measures were used:

— The percentage correct classification (PCC):

TP+ TN
P = 12
ce TP+TN+FP+FN (12)
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— The Jaccard Coefficient:

TP
= 1
Jaccard TP+ FP+ FN (13)

— The Dice Coefficient:

2xTP
Dice= TPy PP 1 FN (14)
These three measures yield different properties: The PCC measure describes the
proportion of matches to the total number of (pixels). Jaccard measure is an
overlap ratio which excludes all non-occurrences, and, thereby, disregards the
information on matches between background pixels. The Dice measure is similar
to Jaccord but it gives more weight to occurrences of edge pixels (TPs).

From each test image we extract three edge maps. The first one is obtained
using our method. The second and third, using canny edge detection with param-
eters selected with the process described in [6], with EGT estimated with ROC
analysis and best parameter selection (PS) using ROC analysis and Chi-Square
test respectively.

In table [I] we present the results of pixel-based comparison to the ground
truth images. Larger values of PCC, Jaccard coefficient and Dice coefficient
indicate greater similarity to the GT images. From the comparison of the mea-
surments we conclude that for this GT dataset, the method proposed in this
paper performs better compared to the method of detector parameter selection
proposed in [6].

Table 1. Results of pixel-based evaluation. Larger values indicate better performance.

GT evaluation results
Our method PS: ROC analysis PS: Chi Square test

Image 1 PCC 0.520055 0.477554 0.484051
Jaccard 0.111810 0.033120 0.045144

Dice 0.201133 0.064117 0.086389

Image 2 PCC 0.509625 0,496870 0,497209
Jaccard 0.065781 0,041458 0,042076

Dice 0,123443 0,079608 0,080754

Image 3 PCC 0,528503 0,518710 0,520773
Jaccard 0,127268 0,108964 0,112783

Dice 0,225799 0,196515 0,202704

Image 4 PCC 0,533181 0,511978 0,511269
Jaccard 0,156842 0,118467 0,117178

Dice 0,271156 0,211838 0,209775

Image 5 PCC 0,520935 0,504178 0,510735
Jaccard  0,092413 0,059962 0,072394

Dice 0,169191 0,113140 0,135014

Image 6 PCC 0,523620 0,511709 0,515407
Jaccard 0,120254 0,098250 0,105069

Dice 0,214691 0,178922 0,190159
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