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Abstract. In this paper we study the ICA feature extraction method for Chinese 
speech signals. The generalized Gaussian model (GGM) is introduced as the 
p.d.f. estimator in ICA since it can provide a general method for modeling non-
Gaussian statistical structure of univariate distributions. It is demonstrated that 
the ICA features of Chinese speech are localized in both time and frequency 
domain and the resulting coefficients are statistically independent and sparse. 
The GGM-based ICA method is also used in extracting the basis vectors 
directly from the noisy observation, which is an efficient method for noise 
reduction when priori knowledge of source data is not acquirable. The de-
nosing experiments show that the proposed method is more efficient than 
conventional methods in the environment of additive white Gaussian noise. 

1   Introduction 

Chinese is a typical tonal and syllabic language, in which each Chinese character 
corresponds to a monosyllable and basically has a phoneme structure with a lexical 
tone. Each Chinese character has four lexical tones (Tone1, Tone2, Tone 3, and Tone 
4) and a neutral tone. There are about 400 toneless Chinese syllables and about 1,300 
toned Chinese syllables. How to extract efficient features from Chinese speech signals 
is a key task of Chinese speech coding, de-noising and recognition. 

Nowadays, many efforts have gone into finding learning algorithms to obtain the 
statistical characteristics of speech and sound signals. However, these commonly used 
features have the limitations that they are sensitive only to second-order statistics 
since they all use correlation-based learning rules like principal component analysis 
(PCA). The failure of correlation-based learning algorithm is that they are typically 
global and reflect only the amplitude spectrum of the signal and ignore the phase 
spectrum. The most informative features of sound signals, however, require higher-
order statistics for their characterization [1-4]. For this reason, we study the ICA feature 
extraction method on Chinese speech signals in this paper. The generalized Gaussian 
model was introduced here to provide a general method for modeling non-Gaussian 
statistical structure of the resulting coefficients which have the form 

of )||exp()( qxxp −∝ . By inferring q, a wide class of statistical distributions can 

be characterized. By comparing the ICA basis with DFT, DCT and PCA basis, it can 
be seen that the proposed method is more efficient than conventional features. 
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The advantage of GGM-based ICA method is also applied in the de-noising of 
Chinese speech signals even when the trained priori knowledge of source data is not 
acquirable. Not only the ICA features but also the de-noising shrinkage function can 
be obtained from the GGM-based ICA sparse coding. Using the maximum likelihood 
(ML) method on the non-Gaussian variables corrupted by additive white Gaussian 
noise, we show how to apply the GGM-based shrinkage method on the coefficients to 
reduce noise. Experiment of noisy male Chinese speech signals shows that our de-
noising method is successful in improving the signal to noise ratio (SNR). 

2   ICA Feature Extraction Using GGM 

In ICA feature extraction methods, the source speech signal is represented as 
segments 
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Where A is defined as ‘basis vector’ of source signals, and s is its corresponding 
coefficient. ICA algorithm is performed to obtain the estimation of independent 
components s from speech segments x by the un-mixing matrix W 

u = W x (2) 

where u is the estimation of independent components s. Basis functions A can be 
calculated from the ICA algorithm by the relation A= W -1.  

By maximizing the log likelihood of the separated signals, both the independent 
coefficients and the unknown basis functions can be inferred. The learning rules is 
represented as 
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here W TW is used to perform the natural gradient, it simplifies the learning rules and 
speeds convergence considerably. The vector )(sϕ is a function of the prior and is 

defined by
s

sp
s

∂
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)(ϕ , and p(s) is the p.d.f. of s. Here we use the GGM as the 

p.d.f. estimator. The GGM models a family of density functions that is peaked and 
symmetric at the mean, with a varying degree of normality in the following general 
form [5] 
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])[(],[ 2µσµ −== sEsE are the mean and standard deviation of the data 

respectively, and ][⋅Γ is the Gamma function. By inferring q, a wide class of 

statistical distributions can be characterized. The Gaussian, Laplacian, and strong 
Laplacian (such as speech signal) distributions can be modeled by putting q = 2, q = 
1, and q < 1 respectively. The exponent q controls the distribution’s deviation from 
normal.  

For the purposes of finding the basis functions, the problem then becomes to 
estimate the value of q from the data. This can be accomplished by simply finding the 
maximum posteriori value q. The posterior distribution of q given the observations 
x={x1,…,xn} is 

)()|()|( qpqxpxqp ∝  (7) 

where the data likelihood is 

]||)(exp[)()|( q
n

n
xqcqqxp −∏= ω  (8) 

and p(q) defines the prior distribution for q, here Gamma function ][⋅Γ  is used as p(q).  

In the case of the GGM, the vector )(sϕ  in eq.3 can be derived as 
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(a)                                                                          (b) 

Fig. 1. (a)-(b) Some basis vectors of male and female Chinese speech signals  
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    Using the learning rule eq. 3 the un-mixing matrix W is iterated by the natural 
gradient until convergence is achieved.  

To learn the basis vector, one male Chinese speech signals and one female Chinese 
speech signals were used. The sampling rates of the original data are both 8kHz. Fig.1 
(a) and (b) show some of the basis vector of the male and female Chinese speech  
 

 
(a) (b) 

Fig. 2. (a)-(b) The frequency spectrum of fig.1 (a) and (b) 

          
(a)                                                                      (b)  

(c) (d)  

Fig. 3. Comparison of DFT, DCT, PCA and ICA basis vector of male Chinese speech signal, 
(a) DFT basis vector, (b) DCT basis vector, (c) PCA basis vector, (d) ICA basis vector  
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signals learned by the GGM-based ICA method. Fig.2 shows the frequency spectrum 
of fig.1 (a) and (b) respectively. It can be seen that the ICA basis vectors of Chinese 
speech signals are localized both in time and frequency domain.  

For comparison, discrete Fourier transform (DFT), discrete cosine transform 
(DCT), and principal component analysis (PCA) basis vectors as conventional 
methods are adopted. Fig.3 compares the waveforms of the DFT, DCT and PCA basis 
with the ICA basis.16 basis functions of male Chinese speech signals for each method 
are displayed.  

From fig. 3 (a)-(d) we can see that the DFT and DCT basis look similar and they 
are spread all over the time axis. For different signals the DFT and DCT basis are 
fixed. PCA basis is data driven and exhibits less regularity and global. However, the 
ICA basis functions are localized in time and frequency, thus they reflect both the 
phase and frequency information inherent in the data. 

3   Speech De-noising Using GGM-Based ICA 

ICA feature extraction is wildly used in de-noising of image and speech signals since 
ICA is an efficient sparse coding method for finding a representation of data [6, 7]. In 
these methods, however, the trained basis vectors were needed and applied for the 
removal of Gaussian noise. In the noise environment, denote y as the noisy coefficient 
of a basis vector, s as the original noise-free version of coefficient of basis vector, and 

v as a Gaussian noise with zero mean and variance 2σ . Then the variable y can be 
describe as 

y = s + v (10) 

Denote p as the probability of s, and f = - log p as its negative log-density, we want to 
estimate s from the observed noisy coefficient y. The estimator of s can be obtained 
by the maximum likelihood (ML) method 

)()(
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minargˆ 2
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Assuming f(·) to be strictly convex and differentiable, the ML estimation gives the 
equation 

)(ˆ yhs =  (12) 

where the nonlinear function h(·) is called as shrinkage function, and the inverse is 
given by 

)()( 21 sfssh ′+=− σ  (13) 

Thus, the estimation of s is obtained by inverting a certain function involving f ′ (·). 

Since f(·) is a function of p.  
There are two difficulties in this method. One is: the noise-free source data is 

needed to train the ICA basis vectors as a priori knowledge. Unfortunately, the 
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corresponding noise-free signals are always not acquirable in practice. The other is 
how to efficiently estimate the p.d.f. of the coefficient vector s which is the key of 
estimating ŝ . To solve these two problems the GGM-based ICA algorithm in section 
2 is used to extract the basis vectors directly from noisy speech signals when the 
noise-free signals cannot be obtained. It is fortunately that the p.d.f. of the coefficients 
p(s) can be learned by the GGM simultaneously since the parameter q of the GGM is 
determined during the ICA feature extraction. 

To recover the de-noised speech signal from the noisy source three steps are needed. 
Firstly, extract the ICA basis vector directly from the noisy speech signals by using 
GGM-based ICA. The p.d.f. of the corresponding coefficients p(s) are obtained at the 
same time. It is demonstrated that the coefficients of the basis vectors extracted directly 
from noisy speech have sparse distributions. Secondly, the shrinkage functions can be 
estimated by p(s) by eq. 13, and the de-noised coefficients can be calculated by )(ˆ yhs = . 

Finally, recover the de-noised speech signal by sAsWx ˆˆˆ 1 == − . 
This method is closed related to the wavelet shrinkage method. However, the 

sparse coding based on ICA may be viewed as a way for determining the basis and 
corresponding shrinkage functions base on the data themselves. Our method use the 
transformation based on the statistical properties of the data, whereas the wavelet 
shrinkage method chooses a predetermined wavelet transform. And the second 
difference is that we estimate the shrinkage nonlinearities by the ML estimation, again 
adapting to the data themselves, whereas the wavelet shrinkage method use fixed 
threshold derived by the mini-max principle. 

4   Experiments 

Noisy male Chinese speech signals mixed with white Gaussian noise were applied to 
perform the proposed method. The sampling rate is 8kHz and 64000 samples are 
used. The first step is the feature extraction of the noisy signals using the GGM-based 
ICA algorithm described in section 2. For the noisy speech signal, the mean was 
subtracted (eq.14) and then 1000 vectors of length 64 (8ms) were generated, and each 
segment was pre-whitened to improve the convergence speed (eq.15). 

x = x – E{x} (14) 

v = E{x xT }-1/2 x (15) 

This pre-processing removes both first- and second-order statistics from the input 
data, and makes the covariance matrix of x equal to the identity matrix, where x 
denoted as the observed noisy signals. The adaptation of the un-mixing matrix W 
started from the 64×64 identity matrix and trained through the 1000 vectors. The 
learning rate was gradually decreased from 0.2 to 0.05 during the iteration. The 
signal-to-noise ratio (SNR) is used to judge the results of the de-noising 
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Fig. 4 shows the noisy male Chinese speech signals with the input SNR of 
6.3850dB and the de-noising results of wavelet method (db3, n=3) and our proposed 
method in (b), (c) and (d) respectively. For comparison, the corresponding noise-free 
signal is given by (a). The SNR of the input noisy signal is 6.3850. The output SNR 
of wavelet and GGM-based ICA method are 10.5446 and 12.9910 respectively. It can 
be seen that the de-noising result of the proposed method is better than that of wavelet 
de-noising method.  
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Fig. 4. The de-noising results of male Chinese speech signals, (a) noise-free male Chinese 
speech signal, (b) noisy male Chinese speech signal, (c) the de-noising result of wavelet, (d) the 
de-noising result of GGM-based ICA 

5   Conclusions 

In this paper, we obtained efficient feature extraction method for Chinese speech 
signals. It is demonstrated that the GGM-based ICA features are localized both in 
time and frequency domain. This efficient ICA feature extraction method was also 
applied to the de-noising of Chinese speech signals and demonstrated better 
performance than wavelet de-noising method. The proposed de-noising method can 
be directly used in practice since it does not need the noise-free signals to train the 
priori knowledge. The experiment on noisy male Chinese speech signal shows that the 
proposed method is efficient to remove the additive white Gaussian noise.  
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