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Abstract. In this work we propose to monitor the cutting tool-wear con-
dition in a CNC-machining center by using continuous Hidden Markov
Models (HMM). A database was built with the vibration signals obtained
during the machining process. The workpiece used in the milling process
was aluminum 6061. Cutting tests were performed on a Huron milling
machine equipped with a Sinumerik 840D open CNC. We trained/tested
the HMM under 18 different operating conditions. We identified three key
transitions in the signals. First, the cutting tool touches the workpiece.
Second, a stable waveform is observed when the tool is in contact with
the workpiece. Third, the tool finishes the milling process. Considering
these transitions, we use a five-state HMM for modeling the process. The
HMDMs are created by preprocessing the waveforms, followed by training
step using Baum-Welch algorithm. In the recognition process, the sig-
nal waveform is also preprocessed, then the trained HMM are used for
decoding. Early experimental results validate our proposal in exploit-
ing speech recognition frameworks in monitoring machining centers. The
classifier was capable of detecting the cutting tool condition within large
variations of spindle speed and feed rate, and accuracy of 84.19%.

Keywords: Signal Processing and Analysis, Remote Sensing Applica-
tions of Pattern Recognition, Hidden Markov Models, Tool-wear moni-
toring.

1 Introduction

Manufacturing processes are typically complex. High Speed Machining (HSM)
systems demand precise and complex operations; operators have to implement
complicated operations in these systems too. Computerized numerical controls
(CNC) systems demand supervisor and protection functions such as monitoring,
and supervising [5]. Also, special software for supporting operators is required
[7.

In any typical metal-cutting process, key factors that define the product
quality are dimensional accuracy and surface finish. One important part in the

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 880-890] 2005.
© Springer-Verlag Berlin Heidelberg 2005



Tool-Wear Monitoring Based on Continuous Hidden Markov Models 881

CNC machines is the cutting tool condition, and it is important to constraint
the following aspects: progressive tool wear, deflection of cutting tool and the
variation of process conditions. We need a cutting tool condition monitoring
system in order to reduce operating cost with the same quality, [13].

Tool wear is caused by a combination of various phenomena. Contact with the
chip produces a crater in the face of the tool. Flank wear, on the other hand, is
commonly due to friction between the tool and the work-piece material. Once the
protective coating is removed, sudden chipping of the cutting edges may occur,
leading to catastrophic failure of the tool. Recent studies conclude that rake-face
wear, flank wear, chipping and breakage are the main modes of tool wear in HSM.
One of the main goals in HSM is to find an appropriate trade-off among tool wear,
surface quality and productivity, considering the cost of the tool, its replacement
cost, the cost of maintain the machine in idle time, and so forth.

Safety is fundamental in tool condition monitoring systems; also, accurate
data acquisition from sensors are mandatory. Sensors should meet certain re-
quirements ensuring robustness, reliability and non-intrusive behavior under nor-
mal working conditions. Almost all sensors present restrictions in the manufac-
turing industry because the harsh environment. The development of new sensors
or technologies for monitoring tool wear are critical in machining business.

In this work, we propose a new recognition approach for tool-wear monitoring
using continuous Hidden Markov Models (HMM). The vibration signals between
the tool and the workpiece will provide the database. In section [, we describe
the state of the art. In section [3l we present our proposal to solve the problem.
In section[d] the experimental set up is described. In section [l the experimental
results are shown. Finally, section [f] concludes the paper.

2 State of the Art

Tool failure represents about 20 % of machine tool down-time, and tool wear
negatively impacts the work quality in the context of dimensions, finish, and sur-
face integrity [9]. Using fuzzy logic, artificial neural networks, and linear regres-
sion, important contributions for tool-wear monitoring had been proposed, with
different sensors (acoustic, electrical, magnetic, accelerometer, etc.) installed in
strategic points of the CNC machine.

In [5], Haber and Alique developed an intelligent supervisory system for tool
wear prediction using a model-based approach. In order to deal with nonlinear
process characteristics, they used an Artificial Neural Network (ANN) output
error model to predict online the resultant cutting force under different cutting
conditions. First, an ANN model is created considering the cutting force, the
feed rate, and the radial depth of the cut. The residual error obtained of the two
forces was compared with an adaptive threshold to estimate the tool wear. This
method evaluated the behavior of the tool in three states; new tool, half~-worn
tool, and worn tool.

In [6], Haber et al. presented an investigation of tool wear monitoring in
a high speed machining process on the basis of the analysis of different sig-
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nals signatures in the time and frequency domains. They used sensorial infor-
mation from relevant sensors (e.g., dynamometer, accelerometer, and acoustic
emission sensor) to obtain the deviation of representative variables. During the
tests measurements at different cutting speeds and feed rates were carried out
to determine the effects of a new and worn tool in high speed roughing. Data
were transformed from time domain to frequency domain through a Fast Fourier
Transformer (FFT) algorithm in order to analyze frequency components. They
conducted second harmonic of the tooth path excitation frequency in the vibra-
tion signal is the best index for tool wear monitoring. Additionally, the spectrum
analysis of acoustic emission (AE) signals corroborates that AE sensors are very
sensitive to changes in tool condition. Also, [I3] worked with multilayered neural
networks for tool condition monitoring in the milling process.

In [T0], Owsley et al. presented an approach for feature extraction from vi-
brations during the drilling. Self-organizing feature maps (SOFM’s) extract the
features. They modified the SOFM algorithm in order to improve its generaliza-
tion abilities and to allow it to server as a preprocessor for a HMM classifier. The
authors used a discrete hidden Markov model. Similar proposals for tool-wear
monitoring can be found in [2/T5ITIRIT4].

3 Tool Wear Monitoring System

Figure [Il shows a flow diagram of the system for monitoring tool-wear using
continuous HMM.

The vibration signal in the machining process is considered the input signal.
As we can see in Figure[I] the input signal is preprocessed and then it is separated
into two branches. The training data branch leads to a HMM model. Given the
model and the parameterized signal a decoder produce a transcript of a specific
pattern as a result. In this training phase the system learns the patterns that
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Fig. 1. Flow diagram for monitoring the tool-wear with continuous HMM
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represent the vibration signals. The testing branch uses the preprocessed input
signal and the HMM model to compute P(O | A) using the Viterbi algorithm
for each model. The model with higher probability is selected as result. Next,
we review the steps and basic concepts of the proposed algorithm.

3.1 Hidden Markov Models

Real world processes produce observable outputs which can be characterized as
signals (discrete/continuous, pure/corrupted, etc.). A problem of fundamental in-
terest is characterizing such signals in terms of models (deterministic/statistical).
Statistical models use the statistical properties of the signal, such as Hidden Markov
Models, [1113].

Definitions. For completeness we will review some basic definitions. A HMM,
as depicted in Figure 2] is characterized by the following:

— N, number of states in the model. We denote the states as S = Sy,---, Sn,
and the state at time t as ¢;.

— M, number of distinct observation symbols per state. We denote the individ-
ual symbols as V = vy, -+ vy

— The state transition probability distribution
A=Plg = Sjlgg—1=5i] , 1 <ij <N

— The observation symbol probability distribution in state j,
B =Ploglgs =S;],1<j<N1<k<M

— The initial state distribution
m=Plgp=5i],1<i<N

Given appropriate values of N, M, A, B, and 7w, the HMM can be used as a
generator to give an observation sequence O = Oq,---,Op. Then, a complete
specification of an HMM requires specification of two model parameters (N,
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Fig. 2. Elements of a HMM: left-right model, 6 states, and observations per state
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and M), specification of observation symbols, and the specification of the three
probability measures A = (A, B, 7). The parameters N, M and A\ are learned
from data. Given this model and the observation we can compute P(O|X).

3.2 Baum-Welch Algorithm
The well-known Baum-Welch algorithm [T1] is used to compute the model pa-

rameters (means, variance, and transitions) given the training data. It is an
iterative process for parameter estimation based on a training data set for a
given model A. The goal is to obtain a new model A where the function

3 P(O,Q[A)

QN =3 p 5 PO, V)] 1)

is maximized. For this algorithm it is need to define a forward and a backward
probability as

ar(i) = PO}, qe =i | N), Bi(i) =P(Of}) | @ =1i,7) (2)

Based on this two functions, the probability for changing from state j to state
k at time t can be defined as

6, k) = 2 i1 (Dascipbin(0)B(5)

YL, ar(i)

where b;(0) is a continuous output probability density function (pdf) for state j
and can be described as a weighted mixture of Gaussian functions, as follow

3)

M M
ZCJkN 0 Hik, jk chkbjk O /j‘Jk”UJk?) (4)
k=1 k=1

where ¢y, is the weight of the gaussian k£ and N (o, i, Uji) is a single gaussian
of mean value pj; and a covariance matrix Ujj. Therefore, the model can be
described in terms of p;x,Uji and cji, and the new set of parameters for model
X are recalculated using Baum-Welch as follow
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3.3 Viterbi Algorithm
The Viterbi algorithm [3] is used to find the single best state sequence, Q =

q1,- - ,qr, for the given observation sequence O = O1,---,0p, we need to
define the quantity
P<O|>‘) = maxQM"',lh—lP[qlv G = Z.aOlv e aOt | A] (9)

3.4 Feature Extraction

The vibration signals are pre-processed calculating their Mel Frequency Cesptral
Coefficient (MFCC) representation [I2]. This common transformation has shown
to be more robust and reliable than other techniques. The process to calculate
the MFCC is shown in Figure Bl
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Fig. 3. Feature extraction process

Each signal is divided into short frames. For each frame the amplitude spec-
trum is obtained using the Discrete Fourier Transform (DFT). Afterwards, the
spectrum is converted to a logarithm scale. To smooth the scaled spectrum,
bandpass filter banks are used. Finally, the discrete cosine transform is applied
to eliminate the correlation between components. The result is a 13-dimension
vector, each dimension corresponding to one parameter. We applied similar con-
siderations as in speech recognition [4], where it is common to estimate the time-
derivative (A) and the time-acceleration (A?) of each parameter. Then, the final
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representation is a 39 dimension vector formed by 12-dimension MFCC, followed
by 1 energy coefficient, 13A and 13 A? coefficients.

4 Experimental Set Up

4.1 CNC Machine

The experimental tests were conducted in a KX10 HURON machining center,
with a capacity of 20 KW, three axis, and equipped with a SIEMENS open-
Sinumerik 840D controller, left image in Figure @ This machining center pos-
sesses high precision sideways that allow all three axis to reach a speed of up
to 30 m/min. The machine has high-rigidity, high-precision features and there
is not interference between the workpiece and the moving parts.

Fig. 4. KX10 Huron CNC-milling center (left), and cutting tool (right)

The cutting tool is an Octomill R220.43-03.00-05 face mill of SECO Carboloy,
with a diameter of 80 mm, depth of cut 3.5 mm, and six inserts of the SECO
Carboloy OFEX-05T305TN-MEQ7 T250M type, right image in Figure 4l

4.2 Data Acquisition System

Figure Bl shows a diagram of the experimental set-up. The vibration signal is
recorded by using an accelerometer installed on the flat metal support. The vi-
bration signals during the machining process was acquired using a 8 bits analog-
digital converter (ADC) sampling at 50 KHz.

The accelerometer has as sensing element a ceramic/shear with (+20%) 10.2
mV/(m/s?) sensitivity and a frequency range of 1.2 Hz - 10 KHz. The range
of measurement is + 490 m/s?. We recorded the vibration signals for several
machining conditions. Spindle speed : 2,000, 1,500, and 1,000 rev/min. Feed
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Fig. 5. Experimental Set-up: Acquisition System to record the vibration signals

rate of the tool : 600, 800, and 1,000 mm/min. Depth of the tool: 1 mm. All the
experiments were made considering two conditions for the tool: good and worn
inserts. We applied a full factorial design to consider all the defined levels for each
machining condition. Then, we required 18 different operating conditions, and
we reproduced the experiments 9 (tool with good inserts) and 8 (tool with worn
inserts) times. We obtained 153 experiments. Figure [0 shows some examples
of the vibration signals. The vibration signals on left of the figure represent
normal conditions of the tool (inserts in good conditions) at different operating
conditions. The vibration signals on the right of the figure were recorded with
worn inserts.

5 Results

Our database was built with the vibration signals obtained during the machin-
ing process. This database contains 153 experiments under 18 different operating
conditions. The first 5 experiments (7)) were used for training, and last 4 ex-
periments were used for testing (7). The data streams are processed using the
Sphinx HMM Toolkit developed at Carnegie Mellon University. The toolkit was
configured to use several Gaussian, left-right, five states, HMMs. Table[Il presents
the accuracy when a signal is processed for the classifier.

We evaluate the performance of the classifier considering the following con-
ditions:
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Fig. 6. Vibration Signals. Left signals represent good cutting tool conditions. Right
signals were obtained with worn inserts. Each condition is defined by the spindle speed
(2000, 1500, 1000 rpm), feed rate (600, 800, 1000 mm/min), depth of the cut (1 mm)
and number of damage inserts (0,5).

— First, we train and test the algorithm with the same database, T;. = T, and
we obtain 95% of success, almost all conditions were identified. Note that we
have very few data for both training and testing steps.

— Second, we test the algorithm with different database, T;. # Ts. We obtain
66.70% of success to recognize the pattern. In this case, the parameters of
the HMM were obtained using only one Gaussian.

— Third, we compute the parameters of the HMM with different Gaussian.
We obtained an 84.10% success with 16 Gaussian. We train and test the
algorithm with different database.

We also configured the HMM toolkit for recognition of two states: good and
faulty(worn inserts) condition. Table 2] presents the results for each condition
using the HMMSs with 16 Gaussian. This table also shows the False Alarm Rate
(FAR) and the False Fault Rate (FFR) and Expected number of workpieces ma-
chining when the fault condition is detected. The FAR is the rate when decoder
detects the tool is in fault condition (worn inserts), but the tool is in good con-
dition. The FFR is the rate when decoder detects the tool is in good condition
and it is not. The FAR condition is not a problem for the machining process.
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Table 1. Accuracy of the model

Experiments for testing Accuracy
Tr="Ts 95 %
Tr #Ts 66.70 % with 1 Gaussian
Tr #Ts 68.30 % with 2 Gaussian
Tr #Ts 79.40 % with 8 Gaussian
Tr #Ts 84.10 % with 16 Gaussian

However, the FFR condition could be a huge problem when it presents a higher
value, because the poor quality of the product and the tool can be broken before
being detected.

Given the FFR we can easily obtain the probability to detect the fault con-
dition as follow:

E(k) =Y _ P(k) (10)
k=1

From this equation, we can also obtain the expected number of pieces processed
before the fault condition is detected, as shown:

1
= 11
1-F,4 (11)

This value is important because it establishes the number of pieces before the
fault condition is detected. This number must be small to reduce the number of
pieces with a poor quality surface, and to reduce the possibilities that the tool
could be broken.

E[k]

Table 2. Probabilities of the HMMs with the 16 gaussian

Condition Probability Description

Py Pop 0.841 Success probability
Py 0.016  False alarm rate E(k) = 1.016
Py g 0.143 False fault rate E(k) =1.167

6 Conclusions and Future Work

In this paper we have proposed an algorithm to monitor the cutting tool-wear
condition in a CNC-machining center by using continuous Hidden Markov Mod-
els. The speech recognition framework was exploited in this domain with success-
ful results and great potential. A database was built with the vibration signals of
different conditions during the machining process of an Aluminium 6061 work-
piece. We trained/tested the HMM for each operating conditions, and the results
were satisfactory given the limited number of experiments. This is a first stage in
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the development of an intelligent system to monitor, supervise, and control the
machining process for a CNC-machining center. We are working in the process
to acquire more vibration signals with other sensors installed in different points
of the machine. We will use these additional signals to train and test new contin-
uous HMMs and evaluate the accuracy of the classifier with the new conditions.
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