
Fuzzy Modeling and Evaluation of the Spatial
Relation “Along”

Celina Maki Takemura1,�, Roberto Cesar Jr.1,��, and Isabelle Bloch2
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Abstract. The analysis of spatial relations among objects in an image
is a important vision problem that involves both shape analysis and
structural pattern recognition. In this paper, we propose a new approach
to characterize the spatial relation along, an important feature of spatial
configuration in space that has been overlooked in the literature up to
now. We propose a mathematical definition of the degree to which an
object A is along an object B, based on the region between A and B
and a degree of elongatedness of this region. In order to better fit the
perceptual meaning of the relation, distance information is included as
well. Experimental results obtained using synthetic shapes and brain
structures in medical imaging corroborate the proposed model and the
derived measures, thus showing their adequation with the common sense.

1 Introduction

To our knowledge, the only work addressing alongness between objects by giving
mathematical definitions was developed in the context of geographic information
systems (GIS) [1]. In this work, the relation along between a line and an object
is defined as the length of the intersection of the line and the boundary of the
object, normalized either by the length of this boundary (perimeter alongness)
or by the length of the line (line alongness). In these definitions, the boundary
can also be extended to a buffer zone around the boundary. Crevier [2] addresses
the problem of spatial relationships between line segments by detecting collinear
chains of segments based on the probability that sucessive segments belong to the
same underlying structure. However this approach cannot be directly extended
to any object shape.

Here we consider the more general case where both objects can have any
shape, and where they are not necessarily adjacent. For computer vision appli-
cations, the considered objects can be obtained for instance from a crisp or fuzzy
segmentation of digital images.
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The along relation is an intrinsically vague notion. Indeed, in numerous sit-
uations even of moderate complexity, it is difficult to provide a definite binary
answer to the question “is A along B?”, and the answer should rather be a
matter of degree. Therefore fuzzy modeling is appropriate. Now if the objects
are themselves imprecisely defined, as fuzzy sets, this induces a second level of
fuzziness. In this paper, we propose a fuzzy model of the relation along , for both
crisp and fuzzy objects. It is based on a measure of elongatedness of the region
between both objects.

In Section 2 we motivate our work based on a few references to other domains
such as psychophysics or linguistics. We propose a mathematical model and a
measure of alongness between crisp objects in Section 3. Their generalization to
fuzzy objects is discussed in Section 4. Experimental results using both synthetic
and real objects are shown in Section 5. Some properties and possible extensions
are provided in Section 6.

2 Spatial Relations and Motivation for Using Fuzzy
Definitions

According to Biederman[3], any object, even the simplest one, may project an
infinity of image configurations to the retina considering orientation and, con-
sequently, the bidimensional projection, possible occlusion, texture complexity,
or if it is a novel exemplar of its particular category. The hypothesis explored
in [3] is that the visual perception may be modeled as a process related to the
identification of individual primitive elements, e.g. a finite number of geometrical
components. In addition, Biederman claims that the relation between parts is
a main feature to the object perception, i.e. two different arrangements of the
same components may produce different objects.

Hummel and Biederman, in [4], claim that the majority of the visual recogni-
tion models are based on template matching or feature list matching. The two of
them present limitations and are not in accordance with the human recognition
[3]. In that way, the authors in [4] present a strutural description to characterize
the object as a configuration of features, sensitive to the attribute structure and
indifferent to the image overview.

Kosslyn et al, in [5], re-affirm the importance of relative positions for object
and scene recognition. They classify those spatial relationships, psychophysically,
according to their visuospatial processing, as absolute coordinate representations
(i.e. precise spatial localization) and categorical representations (i.e. association
of an interval of position to a equivalence class, e.g. left of).

The works in this area started mainly with Freeman’s paper [6], and was
continued during the 80’s by Klette and Rosenfeld [7]. In [6], Freeman presents
mathematical-computational formalisms to represent the semantic context of
terms (in English) that codify relationships between objects by underlining the
necessity of using fuzzy representations for a number of relations. Then several
authors proposed fuzzy representations of some spatial relations (see e.g. [8] for
a review).
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Moreover, when considering works in psycholinguistics, it appears that even
if the objects are crisp, the lack of clarity in the concepts related to the relative
positions gives the background to the use of fuzzy definitions of these concepts.

3 Modeling the Spatial Relation Along for Crisp Objects

In the example of Fig.1(a), it can be said that A is along B, or that B is along A.
The intuitive meaning of the relation is polymorphic: some assumptions can be
made or not on the objects (at least one should be elongated, or both should), the
distance between them should be reduced with respect to the size of the objects
(typically we would not say that A is along B in the example of Fig.1(b)).
What is quite clear is that the region between A and B, denoted by β, should
be elongated, as is the case in Fig.1(a). In our model, we choose to propose a
definition that does not necessarily consider the shape of the objects as a whole,
that is symmetrical in both arguments, and that involves the region between the
objects and their distance. Moreover, as already advocated in [6], defining such
relations in a binary way would not be satisfactory, and a degree of satisfaction
of the relation is more appropriate. Finally, we want also to be able to deal with
situations where the relation is satisfied locally, between parts of the objects
only.
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Adjacent arcs

Fig. 1. (a) Example where A is along B, with an elongated region β between A and
B. (b) Case where β is elongated but A is not along B. (c) Same example as (a) where
adjacent arcs are shown.

Based on these considerations, we propose a mathematical definition of the
degree to witch an object A is along an object B, based on the region between
A and B [9] . The basic idea to characterize to which degree “A is along B” is
based on two steps:
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1. calculate the region β between A and B;
2. measure how elongated is β, thus defining the degree to which A is along B.

This approach is interesting because it involves explicitely the between region,
which is also committed in the usual semantics of the along relation, and a good
technique to calculate the region between A and B is available and used in
our approach. Once the region between A and B is obtained, the issue of how
elongated is β may be treated by shape analysis, leading to different measures
which may be chosen depending on the application, as explained below.

3.1 Definition of the Region Between Two Objects

Since no assumption on the shapes of the objects is made, some classical ways
to define the between region may not be appropriate. In particular, if the objects
have complex shapes with concavities, a simple definition based on the convex
hull of the union of both objects does not lead to a satisfactory result. We
have addressed this problem in [9], where new methods are proposed in order to
cope with complex shapes. We choose here one of these methods, the visibility
approach, which provides results adapted to our aim. In particular, concavities
of an object that are not visible from the other one are not included in the
between area. More formally, this approach relies on the notion of admissible
segments as introduced in [7]. A segment ]a, b[, with a in A and b in B (A and
B are supposed to be compact sets or digital objects), is said admissible if it
is included in AC ∩ BC [9]. Note that a and b then necessarily belong to the
boundary of A and B, respectively. This has interesting consequences from an
algorithmic point of view, since it considerably reduces the size of the set of
points to be explored. The visible points are those which belong to admissible
segments. The region between A and B can then be defined as the union of
admissible segments.

(a) (b)

Fig. 2. (a) Region between two objects, calculated by the visibility approach; (b) Anal-
ogous to (a), but showing that the concavity of one of the objects is properly excluded
from the between region by the visibility method.

Here, for the second step, we need to keep the extremities (belonging to the
boundary of A or B) of the admissible segments in the between region. Therefore
we slightly modify the definition of [9] as:

β = ∪{[a, b], a ∈ A, b ∈ B, ]a, b[ admissible}. (1)
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This definition is illustrated in Fig.2 for two different cases. Note that, in contrast
to the objects in Fig.2(a), in case of Fig.2(b), there is a concavity in one of the
shapes not visible from the other object, and which is properly excluded from
the between region by the visibility approach.

3.2 Definition of the Degree of Elongatedness

There are different possible approaches to measure how elongated is a region.
One of the most popular ones is given by the inverse of compacity, i.e. how
elongated is the region with respect to a circle. This can be measured in the
2D case by the elongatedness measure c = P 2/S, where P and S represent the
perimeter and the area of the region. We have c = 4π for a perfect disk, and the
more elongated is the shape, the larger is c. In order to normalize this measure
between 0 and 1, we propose a first alongness measure defined as:

α1 = f
a

(
P 2(β)
S(β)

)
, (2)

where S(β) and P (β) denote the area and perimeter of region β, respectively,
and fa is an increasing function, typically a sigmoid, such as fa(x) = (1 −
exp(−ax))/(1 + exp(−ax)). This measure α1 tends towards 1 as β becomes
more elongated. Although a is a parameter of the method, it preserves the order
between different situations, which is the most important property. Absolute
values can be changed by tuning a to enhance the difference between different
situations.

However the measure α1 does not lead to good results in all situations. In-
deed it considers a global elongatedness, while the elongatedness only in some
directions is useful. Let us consider the example in Fig.1(b). The region between
A and B is elongated, but this does not mean that A is along B. On the other
hand, the situation in Fig.1(a) is good since β is elongated in the direction of its
adjacency with A and B. In order to model this, instead of using the complete
perimeter of β, the total arc length L(β) of the contour portions of β adjacent
to A or to B is used (see the adjacent arcs indicated in Fig.1(c)). Here, with the
modified definition of β (Equation 1), these lines are actually the intersections
between A and β and between B and β. The new elongatedness measure is then
defined as:

α2 = f
a

(
L2(β)
S(β)

)
. (3)

Although this measure produces proper results, it presents the drawback of
not taking directly into account the distance between A and B, which is useful
in some situations. Also, because α2 is a global measure over A and B, it fails
in identifying if there are some parts of A that are along some parts of B, i.e. it
lacks the capability of local analysis.

There is an interesting way of incorporating these aspects in the present
approach by considering the distance between the two shapes within the between
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area. Let x be an image point, and d(x, A) and d(x, B) the distances from x to A
and B respectively (in the digital case, they can be computed in a very efficient
way using distance transforms). Let DAB(x) = d(x, A)+d(x, B). Instead of using
the area of β to calculate how elongated it is, we define the volume V (β) below
the surface {(x, DAB(x)), x ∈ β}, which is calculated as:

V (β) =
∫

β

DAB(x)dx. (4)

In the digital case, the integral becomes a finite sum.
This leads to an alongness measure taking into account the distance between

A and B:

α3 = f
a

(
L2(β)
V (β)

)
. (5)

The distance DAB(x) may be used in a more interesting way in order to
deal with situations where just some parts of A can be considered along some
parts of B. In such cases, it is expected that such parts are near each other, thus
generating a between region with lower values of DAB(x). Let βt = {x, DAB(x) <
t}, where t is a distance threshold. Let L(βt), S(βt) and V (βt) be the total
adjacent arc length, area and volume for βt. Two local alongness measures, in
the areas which are sufficiently near to each other according to the threshold,
are then defined as:

α4(t) = f
a

(
L2(βt)
S(βt)

)
, (6)

and

α5(t) = f
a

(
L2(βt)
V (βt)

)
. (7)

4 Modeling the Spatial Relation Along for Fuzzy Objects

Now we consider the case of fuzzy objects, which may be useful to deal with
spatial imprecision, rough segmentation, etc. We follow the same approach in
two steps as in the crisp case.

The visibility approach for defining the between region can be extended to the
fuzzy case by introducing the degree to which a segment is included in AC ∩BC

(which is now a fuzzy region). Let µA and µB be the membership functions of
the fuzzy objects A and B. The degree of inclusion µincl of a segment ]a, b[ in
AC ∩ BC is given by:

µincl(]a, b[) = inf
y∈]a,b[

min[1 − µA(y), 1 − µB(y)]. (8)

Let us denote the support of the fuzzy objects A and B by Supp(A) and Supp(B)
respectively. The region between A and B, denoted by βF , is then defined as

βF (x) = sup{µincl(]a, b[); x ∈ [a, b], a ∈ Supp(A), b ∈ Supp(B)}. (9)
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In order to define alongness measures analogous to αl, l = 1...5, it is necessary
to calculate the perimeter, area and volume of βF . Perimeter P (βF ) and area
S(βF ) are usually defined as [10]:

P (βF ) =
∫

Supp(βF )
| � βF (x)|dx, (10)

where �βF (x) is the gradient of βF , and

S(βF ) =
∫

Supp(βF )
βF (x)dx. (11)

The extension of α2 requires to define the adjacency region Radj between the
objects and β. In order to guarantee the consistency with the crisp case, we can
simply take the intersection between A and β and between B and β and extend
L as:

Radj(βF , µA∪B) = (Supp(βF ) ∩ Supp(A)) ∪ (Supp(βF ) ∩ Supp(B)), (12)

where µA∪B represents the union of the fuzzy objects A and B, and:

L(βF , µA∪B) = S(Radj(βF , µA∪B)). (13)

Finally, it is also necessary to calculate the distance of any point x of the
between region to A and to B. We propose the use of the lenght of the admissible
segments:

DAB(x) = inf{‖b−a‖, ]a, b[ admissible, x ∈]a, b[}, for x ∈ (Supp(A)∪Supp(B))C .
(14)

Then, we define the volume V (βF ) below the surface {(x, DAB), x ∈ βF } by
weighting each point by its membership to βF (x), as:

V (βF ) =
∫

Supp(βF )
βF (x)DAB(x)dx. (15)

In order to keep the fuzzy nature of the model, instead of thresholding the
distance function as in the crisp case, we propose to select the closest area based
on a decreasing function g of DAB. We thus have βFt(x) = βF (x)g(DAB(x)). In
our experiments, we have chosen g as:

g(t) = 1 − fa1(t), (16)

with a1 = 0.3.

5 Experimental Results

Extensive results with a large number of pairs of shapes have been successfully
produced. Some of these results are presented and discussed in this section.
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(a) (b)

Fig. 3. Results using the visibility approach to calculate β. (a) Synthetic shapes and
the region β between them. The adjacent arcs are also indicated. (b) The distance map
DAB(x) in β is represented as grey-levels.

Table 1. Alongness values for different shape configurations (synthetic shapes) with
parameters a = 0.125 and t = 10
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Shapes (a) (b) (c)
α1 0.907 0.450 0.874
α2 0.885 0.431 0.340
α3 0.172 0.011 0.010

α4(10) 0.834 0.653 0.072
α5(10) 0.165 0.127 0.010

(a) (b)

Fig. 4. Results using the visibility approach to calculate β and βt. (a) The distance
map DAB(x) in β is represented as grey-levels. (b) The thresholded between region
βt = {x, DAB(x) < t}, indicating that only nearby contour portions are taken into
account by this approach.

5.1 Crisp Objects

Table 1 shows some results obtained on synthetic objects illustrating different
situations. The adjacent lines and distance values of the object in Table 1(a)
are shown in Fig.3 (a) and (b), respectively. High values of DAB(x) correctly
indicate image regions where the shapes are locally far from each other.

In the example of Table 1(a), the two objects can be considered as along
each other, leading to high values of α1, α2 and α4. However some parts of the
objects are closer to each other than other parts. When the distance increases,
the corresponding parts can hardly be considered as along each other. This is
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Table 2. Alongness values for different shape configurations (brain structures from
medical imaging) with parameters a = 0.25 and t = 10

Shapes (a) (b) (c) (d)
α1 0.746 0.677 0.487 0.708
α2 0.746 0.677 0.438 0.289
α3 0.717 0.611 0.133 0.015

α4(10) 0.746 0.677 0.438 0.001
α5(10) 0.717 0.611 0.133 0.000

(a) (b) (c)

Fig. 5. Results using the fuzzy visibility approach to calculate βF and βFt . (a) Original
shapes. (b) Shapes and the region βF between them. (c) Shapes and the thresholded
between region βFt(x) = {x, DAB(x) < t}.

well expressed by the lower values obtained for α3 and α5. These effects are even
stronger on the example of Table 1(b) where only small parts of the objects
can be considered as being along each other. The between regions β and βt (i.e.
thresholded) are shown in Fig.4. The third case is a typical example where the
region between A and B is elongated, but not in the direction of its adjacency
with A and B. This is not taken into account by α1, while the other measures
provide low values as expected: α2 is much smaller than α1 and the other three
values are almost 0.

Table 2 shows results obtained on real objects, which are some brain struc-
tures extracted from magnetic resonance images. Similar values are obtained for
all measures in the two first cases where the relation is well satisfied. The third
example shows the interest of local measures and distance information (in par-
ticular the similar values obtained for α2 and α4 illustrate the fact that only the
parts that are close to each other are actually involved in the computation of the
between region for this example), while the last one is a case where the relation
is not satisfied, which is well reflected by all measures except α1, as expected.

5.2 Fuzzy Objects

The experiments concerning the fuzzy approach are based on the construction
of synthetical fuzzy objects by a Gaussian smoothing of the crisp ones, only
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(a) (b)

Fig. 6. (a) The distance map DAB(x) in βF of the objects in Figure 5 (a). (b) The
decreasing function g of DAB(x).

Table 3. Alongness values for different shape configurations (fuzzy synthetic shapes)
with parameters a = 0.50 and a1 = 0.30

Shapes (a) (b) (c)
αF1 0.990 0.815 0.982
αF2 0.999 0.948 0.881
αF3 0.879 0.531 0.515
αF4 0.975 0.755 0.572
αF5 0.686 0.552 0.508

Table 4. Alongness values for different shape configurations (fuzzy brain structures
from medical imaging) with parameters a = 0.25 and a1 = 0.30

Shapes (a) (b) (c) (d)
αF1 0.996 0.997 0.980 0.997
αF2 0.984 0.965 0.972 0.971
αF3 0.888 0.840 0.675 0.536
αF4 0.812 0.764 0.781 0.544
αF5 0.675 0.643 0.579 0.503

for the sake of illustration. In real applications, fuzzy objects may be obtained
from a fuzzy segmentation of the image, from imprecision at their boundaries,
from partial volume effect modeling, etc. Figure 5 illustrates an example of fuzzy
objects along with the between region and the fuzzy regions βF and βFt . The
distance map and the selected area are depicted in Figure 6.

Some results obtained on fuzzy synthetic shapes are given in Table 3, while
some results on fuzzy real objects are given in Table 4. In these tables, αFi

denotes the fuzzy equivalent of αi.
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Results are again in accordance with what could be intuitively expected. This
illustrates the consistency of the proposed extension to fuzzy sets.

Since the computation of L, S and V in the fuzzy case is based on the support
of the fuzzy objects, which is larger than the corresponding crisp objects, we
have to choose a different value for the parameter a, in order to achieve a better
discrimination between the different situations. However a has the same values
for all objects in each table, for the sake of comparison. Note that in Table 3 as
well as in Table 4, the results obtained on fuzzy synthetic and real objects are
qualitatively the same as the results obtained on crisp object: in particular, αF3

and αF5 well reflect the distance constraint on the alongness degree.

6 Conclusion

We proposed in this paper an original method to model the relation along and
to compute the degree to which this relation is satisfied between two objects of
any shape. Several measures are proposed, taking into account different types of
information: region between the objects, adjacency between the objects and this
region, distance, parts of objects. The definitions are symmetrical by construc-
tion. They inherit some properties of the visibility method for computing the
between area such as invariance under translation and rotation. Measures α1,
α2 and α4 are also invariant under isotropic scaling. Finally, the proposed mea-
sures fit well the intuitive meaning of the relation in a large class of situations,
and provide a ranking between different situations which is consistent with the
common sense. One of the advantages of the proposed approach is the decom-
position of the solution in two parts, i.e. to find the region between the objects
and to calculate its elongatedness. The inverse of compacity (sometimes called
circularity) has been adopted to measure how elongated is the region between
the shapes. This is by no means the unique way of characterizing elongatedness.
In fact, if the region between the shapes becomes very complex (e.g. Fig.7), the
area starts to increase fast with respect to the perimeter (i.e. space-filling prop-
erty), and circularity-based measures may produce poor results. In such cases,
alternative elongatedness measures may be adapted to replace circularity in our
proposed approach (e.g. shape measures that characterize thinness of a shape).

Alternative approaches to the computation of length of the adjacencies and
distances can be tested. We can restrict, for example, the adjacent region to the

Fig. 7. Complex shapes lead to space-filling between region. This may affect the
circularity-based elongatedness measure, thus requiring alternative approaches to eval-
uate how elongated is the between region.
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watershed line of this intersection, and compute its length in a classical way. On
the other hand, instead of using Equation 14, we can calculate DµA∪B with the
distances to the α-cuts. The distance d(x, µ) from a point x to a fuzzy set with
membership function µ can indeed be defined by integrating over α the distance
from x to each α-cut. Another option is to calculate d(x, µ) as the distance of x
to the support of µ, i.e. d(x, µ) = d(x, Supp(µ)). These definitions are useful for
implementation purposes since for each α-cut, a fast distance transform can be
used.

Extensions to 3D are straightforward: the computation of the between rela-
tion does not make any assumption on the dimension of space; the measures
of elongatedness can be simply performed by replacing lengths by surfaces and
surfaces by volumes.

Future work also aims at introducing this relation as a new feature in struc-
tural pattern recognition or content-based image retrieval schemes.
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