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Abstract. This paper generalizes the technique described in [1] to gray-
scale image processing applications. This method chooses a subset of
variables W (i.e. pixels seen through a window) that maximizes the in-
formation observed in a set of training data by mean conditional entropy
minimization. The task is formalized as a combinatorial optimization
problem, where the search space is the powerset of the candidate vari-
ables and the measure to be minimized is the mean entropy of the esti-
mated conditional probabilities. As a full exploration of the search space
requires an enormous computational effort, some heuristics of the feature
selection literature are applied. The introduced approach is mathemati-
cally sound and experimental results with texture recognition application
show that it is also adequate to treat problems with gray-scale images.

1 Introduction

The paper [1] discusses a technique based on information theory concepts to es-
timate a good W-operator to perform binary image transformations (e.g. noisy
image filtering). A W-operator is an image transformation that is locally defined
inside a window W and translation invariant [2]. This means that it depends just
on shapes of the input image seen through the window W and that the trans-
formation rule applied is the same for all image pixels. A remarkable property
of a W-operator is that it may be characterized by a Boolean function which
depends on |W | variables, where |W | is the cardinality of W .

Here, the W-operator will be extended to be applied to gray-scale images.
For this, instead of considering it as a Boolean function, we will consider it as
a function whose domain is a vector of integer numbers (gray levels) and the
output is a integer number (one of the considered classes). Then, the method
developed in [1] can be extended to deal with this problem in a similar way to
the design of W-operators for binary image transformations.

In order to build the training set, the adopted window collects feature vectors
(vectors of integer numbers representing gray levels) translating over the input
gray-scale images. From this training set, a gray-scale W-operator is estimated.
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This task is an optimization problem. The training data gives a sample of
a joint distribution of the observed feature vectors and their classification. A
loss function measures the cost of a feature vector missclassification. An oper-
ator error is the expectation of the loss function under the joint distribution.
Given a set of operators, the target operator is the one that has minimum error.
As, in practice, the joint distribution is known just by its samples, it should be
estimated. This implies that operators error should also be estimated and, con-
sequently, the target operator itself should be estimated. Estimating an operator
is an easy task when the sampling of the joint distribution considered is large.
However, this is rarely the case. Usually, the problem involves large windows
with non concentrated probability mass joint distributions requiring prohibitive
amount of training data.

The fact that each pixel in gray-scale images contains more than two pos-
sible values worsens the problem of lack of training data. Because of this, an
approach for dealing with the lack of training data becomes even more required.
By constraining the considered space of operators, less training data is necessary
to get good estimations of the best candidate operator [3]. However, depending
on how many gray levels exists in an image, the constraint may be so excessive
that even the best operator of such space lead to very bad classification results.
Therefore, quantization is usually necessary.

In this paper, we discuss how to apply the criterion function used in [1] to
estimate an sub-window W ∗ that gives one of the best operators to perform
classification over images with arbitrary number of gray levels and arbitrary
number of classes.

The search space of this problem is the powerset of W , denoted P(W ). The
criterion to be minimized is the degree of mixture of the observed classes. The
mean conditional entropy is adopted as a measure of this degree. The impor-
tant property of entropy explored here is that when the probability mass of a
distribution becomes more concentrated somewhere in its domain, the entropy
decreases. This means that when a given feature vector defined in a window
has a majoritary label (i.e. it is classified almost always in a same class), its
entropy of the conditional distribution should be low. Thus, the optimization
algorithm consists in estimating the mean conditional entropy for the joint dis-
tribution estimated for each sub-window and choosing the one that minimizes
this measure.

Each observed feature vector has a probability and a corresponding condi-
tional distribution from which the entropy is computed. The mean conditional
entropy is the mean of the computed entropies, weighted by the feature vector
probabilities.

As P(W ) has an exponential size in terms of the cardinality of W , we adopted
some heuristics to explore this space in reasonable computational time. The
adopted heuristic was the SFFS feature selection algorithm [4].

Following this Introduction, Section 2 recalls the mathematical fundamentals
of W-operators design with extension to gray-scale images. Section 3 introduces
the definitions and properties of the mean conditional entropy and presents the
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proposed technique for generating the minimal window and, consequently, choos-
ing a minimal family of operators. Section 4 presents results of the application of
the proposed technique to recognize textures with multilevel gray tone. Finally,
Section 5 presents some concluding remarks of this work.

2 W-Operator Definition and Design

In this section, we recall the notion of W-operator and the main principles for
designing W-operators from training data.

2.1 W-Operator Definition and Properties

Let E denote the integer plane and + denote the vector addition on E. The
opposite of + is denoted −. An image is a function f from E to L = {1, ..., k},
where k is the number of gray tones.

The translation of an image f by a vector h ∈ E is the image f(x)h. An image
classification or operator is a mapping Ψ from LE into Y E , where Y = {1, ..., c}
is the set of labels (classes).

An operator Ψ is called translation invariant iff, for every h ∈ E and f ∈ LE ,

Ψ(fx) = (Ψ(f))x . (1)

Let W be a finite subset of E. A constraint class of f over W , denoted Cf |W ,
is the family of functions whose constraint to W results in f |W , i.e.,

Cf |W = {g ∈ LE : f |W = g|W} . (2)

An operator Ψ : LE → Y E is called locally defined in the window W iff, for
every x ∈ E, f ∈ LE .

Ψ(f)(x) = Ψ(g), ∀g ∈ Cf−x|W . (3)

An operator is called a W-operator if it is both translation invariant and
locally defined in a finite window W . Given a W-operator Ψ : LE → Y E , exists
one characteristic function ψ : LW → Y such that:

Ψ(f)(x) = ψ(f−x|W ), ∀x ∈ E . (4)

2.2 W-Operator Design

Designing an operator means choosing an element of a family of operators to per-
form a given task. One formalization of this idea is as an optimization problem,
where the search space is the family of candidate operators and the optimization
criteria is a measure of the operator quality. In the commonly adopted formula-
tion, the criteria is based on a statistical model for the images associated to a
measure of images similarity, the loss function.
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Let S and I be two discrete random functions defined on E, i.e. realizations of S
or I are images obtained according with some probability distribution on LE . Let
us model image transformations in a given context by the joint random process
(S, I), where the process S represents the input images and I the output images.
The process I depends on the process S according to a conditional distribution.

Given a space of operators F and a loss function � from L × L to �+,
the error Er[Ψ ] of an operator Ψ ∈ F is the expectation of �(Ψ(S), I), i.e.,
Er[Ψ ] = E[�(Ψ(S), I)]. The target operator Ψopt is the one of minimum error,
i.e., Er[Ψopt] ≤ Er[Ψ ], for every Ψ ∈ F .

A joint random process (S, I) is jointly stationary in relation to a finite
window W , if the probability of seeing a given feature vector in the input image
through W together with a given value in the output image is the same for every
translation of W , that is, for every x ∈ E,

P ((S|Wx, I(x)) = P (S|W, I(o)) , (5)

where S is a realization of S, I is the function equivalent to a realization of I,
and o is the origin of E.

In order to make the model usable in practice, from now on suppose that
(S, I) is jointly stationary w.r.t the finite window W . Under this hypothesis,
the error of predicting an image from the observation of another image can be
substituted by the error of predicting a pixel from the observation of a feature
vector through W and, consequently, the optimal operator Ψopt is always a W-
operator. Thus, the optimization problem can be equivalently formulated in the
space of functions defined on LW , with joint random processes on (LW , Y ) and
loss functions � from L × L to �+.

In practice, the distributions on (LW , Y ) are unknown and should be esti-
mated, which implies in estimating Er[ψ] and ψopt itself. When the window is
small or the distribution has a probability mass concentrated somewhere, the
estimation is easy. However, this almost never happens. Usually, we have large
windows with non concentrated mass distributions, thus requiring prohibitive
amount of training data.

An approach for dealing with the lack of data is constraining the search space.
The estimated error of an operator in a constrained space can be decomposed
as the addition of the error increment of the optimal operator (i.e., increase
in the error of the optimal operator by the reduction of the search space) and
the estimation error in the constrained space. A constraint is beneficial when
the constraint estimation error decreases (i.e., w.r.t the estimation error in the
full space) more than the error increment of the optimal operator. The known
constraints are heuristics proposed by experts.

3 Window Design by Conditional Entropy Minimization

Information theory has its roots in Claude Shannon’s works [5] and has been suc-
cessfully applied in a multitude of situations. In particular, mutual information
is a useful measure to characterize the stochastic dependence among discrete
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random variables [6] [7] [8]. It may be applied to feature selection problems in
order to help identifying good subspaces to perform pattern recognition [9] [10].
For instance, Lewis [11] explored the mutual information concept for text cate-
gorization while Bonnlander and Weigend used similar ideas for dimensionality
reduction in neural networks [12]. Additional works that may also be of interest
include [13] [14]. An important concept related to the mutual information is the
mean conditional entropy, which is explored in our approach.

3.1 Feature Selection: Problem Formulation

Given a set of training samples T where each sample is a pair (x,y), a function ψ
from Ln to Y = {1, ..., c}, called a classifier, may be designed. Feature selection
is a procedure to select a subset Z of I = {1, 2, ..., n} such that XZ be a good
subspace of X to design a classifier ψ from L|Z| to Y .

The choice of Z creates a constrained search space for designing the classifier
ψ. Z is a good subspace, if the classifier designed in Z from a training sample T
has smaller error than the one designed in the full space from the same training
sample T .

Usually, it is impossible to evaluate all subsets Z of I. Two different aspects
involve searching for most suitable subsets: a criterion function and a search
algorithm (often based on heuristics in order to cope with the combinatorial
explosion) [15]. There are many of such algorithms proposed in the literature
and the reader should refer to [16] for a comparative review.

Next section explains how we explore the mean conditional entropy as a
criterion function to distinguish between good and bad feature subsets.

3.2 Mean Conditional Entropy as Criterion Function

Let X be a random variable and P be its probability distribution. The entropy
of X is defined as:

H(X) = −
∑

x∈X

P (x)logP (x) , (6)

with log0 = 0. Similar definitions hold for random vectors X. The motivation
for using the entropy as a criterion function for feature selection is due to its
capabilities of measuring the amount of information about labels (Y ) that may be
extracted from the features (X). The more informative is X w.r.t. Y , the smaller
is H(Y |X). The basic idea behind this method is to minimize the conditional
entropy of Y w.r.t the instances xZi of XZ.

The criterion function adopted by the algorithm is the mean conditional
entropy as described in [1] (Equation 7).

Ê[H(Y |XZ)] =
|L||Z|∑

i=1

Ĥ(Y |XZi) · (oi + α)
α|L||Z| + t

, (7)

where Ĥ(Y |XZi) is the entropy of the estimated conditional probability
P̂ (Y |XZi), oi is the number occurrences of XZi in the training set, t is the total
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number of training samples, |L||Z| is the number of possible instances of XZ

and α is a weight factor used to model P (XZ) in order to circumvent problems
when some instances of XZ are not observed in the training data. These non
observed instances lead to prior entropy of Y (Ĥ(Y )), which is slightly different
from the criterion defined by [1] based on the entropy of the uniform distribution
(maximum entropy).

Thus, feature selection may be defined as an optimization problem where we
search for Z∗ ⊆ I such that:

Z∗ : H(Y |XZ∗) = minZ⊆I{Ê[H(Y |XZ)]} , (8)

with I = {1, 2, ..., n}.
Dimensionality reduction is related to the U-curve problem where classifica-

tion error is plotted against feature vector dimension (for an a priori fixed num-
ber of training samples). This plot leads to a U-shaped curve implying that an
increasing dimension initially improves the classifier performance. Nevertheless,
this process reach a minimum after which estimation errors degrades the clas-
sifier performance [15]. As it would be expected, the mean conditional entropy
with α positive and conditional entropies of non observed instances conveniently
treated reflects this fact, thus corroborating its use for feature selection [1].

4 Experimental Results

This section presents a method for texture classification that uses the SFFS
algorithm with mean conditional entropy to design W-operators that classify

Fig. 1. Textures with 256 gray levels used in this experiment
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(a) (b) (c)

Fig. 2. Typical subwindows obtained using the textures of the Figure 1 to design the
W-operator. (a) k′ = 2, 20% of pixels to form the training set; (b) k′ = 4, 20% of pixels
to form the training set; (c) k′ = 8, 40% of pixels to form the training set.
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Fig. 3. Histograms of label frequency after the classification performed by the W-
operator for each region of the Figure 1 (40% of pixels used to form the training set;
k′ = 8). The textures are numbered from 1 to 9 and the histograms are placed in raster
order by these numbers.

gray-scale textures. Figure 1 shows an example containing 9 textures with 256
gray tones (c = 9 and k = 256).

The training set used to choose the window points and design the W-operator
under this window is obtained from input textures. A window of fixed dimen-
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(a) (b)

(c) (d)

Fig. 4. Final results after applying the mode filters post-processing. (a) k′ = 2, 10% of
pixels to form the training set, MAE = 0.1020; (b) k′ = 2, 20% of pixels to form the
training set, MAE = 0.0375; (c) k′ = 4, 20% of pixels to form the training set, MAE
= 0.0095; (d) k′ = 8, 40% of pixels to form the training set, MAE = 0.0037.

sions is centered at each selected pixel collecting the feature vector observed and
its respective label (texture). Each feature vector is quantized in order to avoid
excessive constraining in the space of W-operators that can be estimated ade-
quately. Given a quantization degree k′ < k, the lowest and highest gray levels
observed in the considered feature vector form a interval which is divided in k′

intervals of equal size. Then, these intervals are used to do the quantization of
the collected feature vector. Thus, each quantized feature vector together with
its label form a training sample.

The feature selection algorithm used to choose the window points is the
Sequential Floating Forward Selection (SFFS). This algorithm has a good cost-
benefit, i.e., it is computationally efficient and returns a very good feature sub-
space [4]. The criterion function used to drive this method is the mean conditional
entropy as defined by Equation 7.

We have analyzed the MAE (Mean Absolute Error) obtained by application
of our technique using as input nine textures presented in Figure 1 with increas-
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Table 1. Average, standard deviation, minimum and maximum for MAE results after
10 executions for increasing number of training samples (% of pixels) and increasing
quantization level k

Training samples
10% 20% 40%

avg 0.0899 0.0345 0.0151
±std ±0.0099 ±0.0049 ±0.0019

k′ = 2 min 0.0723 0.0281 0.0121
max 0.1020 0.0420 0.0182
avg 0.0711 0.0097 0.0087
±std ±0.0082 ±0.0008 ±0.0010

k′ = 4 min 0.0628 0.0085 0.0071
max 0.0859 0.0110 0.0100
avg 0.0270 0.0176 0.0038
±std ±0.0033 ±0.0019 ±0.0003

k′ = 8 min 0.0197 0.0157 0.0033
max 0.0308 0.0218 0.0043

ing quantization degrees k′ (2, 4 and 8), increasing number of training samples
(10%, 20% and 40% of pixels of each texture randomly chosen) and a 7 by 7
window (49 features in total). The designed W-operator observes and quantizes
the feature vectors through a subset of the window points (chosen by SFFS with
mean conditional entropy) to label the pixel centered at this window. The re-
sults presented here took as the image test, the image of the Figure 1. Typical
subwindows obtained are ilustrated by Figure 2.

In all cases, each region correponding to one of the textures received the
correct label with significant majority. Figure 3 shows a histogram for pixel
classification of the nine considered regions, using k′ = 8 and 40% of the image to
form the training data. These histograms do not take into account the undefined
labels.

In order to remove the undefined labels and improve the final texture seg-
mentation, one step of post-processing is proposed. This step is an application
of the mode filter multiple times for decreasing window dimensions. The mode
filter is a window-based classifier that translates a window over all pixels of the
labeled image produced by the designed W-operator and attributes the most
frequent label observed to its central pixel. We propose the application of mode
filter to windows with the following dimensions in the same order as they ap-
pears: 15 × 15, 13 × 13, 11 × 11, 9 × 9, 7 × 7, 5 × 5, 3 × 3. Assuming that
there are many more correct labels than incorrect ones (see Figure 3), this step
helps to eliminate errors, although, depending on similarity among textures in
certain regions, there is a risk to propagate errors.

Figure 4 presents the final texture segmentation result of the image presented
by Figure 1, for 4 distinct pair values (k′, % of training samples). Results ob-
tained using the textures of the Figure 1 as input after 10 executions for each
considered pair (k′, % of training samples) are summarized in the Table 1. Note
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(a) (b)

(c) (d)

Fig. 5. (a) Mosaic of textures obtained from the Figure 1; (b) Correponding template
of labels; (c) Final result using k′ = 4 and 20% of pixels from the textures of Figure 1
(MAE = 0.0380); (d) Corresponding texture segmentation

that the results are satisfactory even taking small training samples to design the
W-operators. Also is important to note that quantizations k′ = 4 and k′ = 8
lead to better results than those obtained by k′ = 2, although this last quan-
tization level already presents good results. Finally, a result obtained from the
mosaic of the Figute 5(a) using k′ = 4 and 20% of pixels from the textures of
Figure 1 to design the W-operator is ilustrated by Figure 5(c), showing that
our method is adequate for segmentation of small textures. Figure 5(b) shows
its corresponding template of labels and Figure 5(d) shows the corresponding
texture segmentation.

5 Concluding Remarks

This paper presents an extension for the design of W-operators from training
data to be applied to gray-scale image analysis. A hypothesis for applying the
presented approach is that the conditional probabilities of the studied pattern
recognition problem have mass concentrated in one class when the problem has
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a good solution. Experimental results with texture recognition have been pre-
sented.

The proposed technique is general and may be applied in a wide range of
image processing problems besides texture segmentation, including document
analysis and color image processing.

For the estimation of the conditional entropy it is required the estimation of
the conditional probabilities P (Y |XZ) and the prior distribution P (XZ). The
conditional probabilities are estimated based on simple counting of the observed
classifications of a given feature vector. The entropy for XZ is computed from
the estimated distribution P̂ (Y |XZ). The distribution of P (Y |XZ) when XZ is
not observed in training set were considered uniform in [1]. But the conditional
entropy H(Y |XZ) can not be higher than the entropy a priori of Y (H(Y )),
since the information a priori about Y cannot decrease.

The parameter α in Equation 7 gives a determined probability mass for the
non-observed instances. We have verified empirically that this parameter fixed
as 1 leads to a very good balance between error due to noise in feature vector
classification and estimation error. However, this parameter could be estimated
from the training data in order to obtain better results. We are currently working
on this problem to improve the proposed technique.

A branch and bound feature selection algorithm that explores the ”U-curve”
effect by our mean conditional entropy estimator [1] is under development. The
goal is to obtain the optimal feature subspace in reasonable computational time.
Results will be reported in due time.
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