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Abstract. In this paper, we propose a robust surface registration using a 
Gaussian-weighted distance map for PET-CT brain fusion. Our method is 
composed of three steps. First, we segment the head using the inverse region 
growing and remove the non-head regions segmented with the head using the 
region growing-based labeling in PET and CT images, respectively. The feature 
points of the head are then extracted using sharpening filter. Second, a 
Gaussian-weighted distance map is generated from the feature points of CT 
images to lead our similarity measure to robust convergence on the optimal 
location. Third, weighted cross-correlation measures the similarities between 
the feature points extracted from PET images and the Gaussian-weighted 
distance map of CT images. In our experiments, we use software phantom and 
clinical datasets for evaluating our method with the aspect of visual inspection, 
accuracy, robustness, and computation time. Experimental results show that our 
method is more accurate and robust than the conventional ones. 

1   Introduction 

Computed tomography (CT) is a well-established means of diagnosing metastasis of 
oncology patients and evaluating disease progression and regression during treatment. 
However, CT has lower sensitivity and specificity than positron emission tomography 
(PET) in identifying tumors of initial staging or defining their biological behavior and 
response to therapy, while PET has a limitation in achieving precise lesion size and 
shape due to the few anatomical structures. Currently, whole body PET-CT fusion 
using hardware is introduced so as to provide a rough alignment of whole body 
rapidly. However, it is still critical to develop a registration technique for aligning two 
different modalities exactly and robustly since images obtained from the PET-CT 
scanner are acquired with different scan time. 

Surface- and voxel-based approaches have been suggested for alignment of 
functional and anatomical images [1]. In surface-based approach, it requires the 
delineation of corresponding surfaces in each image. Hongjian et al. [2] used the 
chamfer distance matching for PET-MR brain fusion. Each rigid surface segmented 
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from PET and MR brain images is aligned by repeatedly minimizing values of each 
distance map. Maintz et al. [3] proposed a feature-based cross-correlation to search 
for the optimal location where the number of corresponding points between feature 
points extracted from both images is a maximum. However, the accuracy of these 
surface-based approaches is largely affected by the result of surface extraction. In 
voxel-based approach, it measures the similarity of all geometrically corresponding 
voxel pairs in overlapping area. Especially, mutual information-based registration [4] 
shows the accurate results in comparison with other voxel-based approaches and 
surface-based approach. However, mutual information-based registration requires 
enormous processing time in comparison with surface-based approaches even though 
multi-resolution technique or other improvements are used.  

Current approaches still need more progress in computational efficiency and 
accuracy for registration between functional and anatomical images. In this paper, we 
propose a surface-based registration using Gaussian-weighted distance map (GWDM) 
to robustly find optimal location even in bad conditions such as blurry and noisy 
images. Our method is applied to PET and CT brain images, which divided into three 
steps such as head segmentation and non-head elimination, Gaussian-weighted 
distance map generation, similarity measure and optimization. In our experiments, we 
use software phantom and clinical datasets for evaluating our method with the aspects 
of visual inspection, accuracy, robustness, and computation time. 

The organization of the paper is as follows. In Section 2, we discuss how to extract 
feature points efficiently. Then we propose a robust surface registration using 
Gaussian-weighted distance map in PET and CT brain images. In Section 3, 
experimental results show how our method aligns exactly and robustly using software 
phantom and clinical datasets. This paper is concluded with a brief discussion of the 
results in Section 4. 

2   Surface Registration Using GWDM 

Fig. 1 shows the pipeline of our method for the registration of PET and CT brain 
images. Since CT images have more anatomical information than PET images, CT 
images are fixed as reference volume and PET images are defined as floating volume. 
Since rigid transformation is enough to align the head base, we use three translations 
and three rotations about the x-, y-, z- axis.  

2.1   Head Segmentation Using 3D Inverse Region Growing 

Since the head segmentation using threshold-based method can produce holes within 
the head, these holes should be filled by morphological operations such as dilation 
and erosion. However, we decide the number of iterations of morphological operation 
in proportion to the size of holes as well as the computation time is increased by the 
number of iterations. In addition, numerous iterations can produce distortions of edge. 
Thus we propose a 3D inverse region growing (IRG) for the automatic head 
segmentation without additional processing such as hole filling in PET and CT brain 
images. 



796 H. Lee and H. Hong 

 

Fig. 1. The pipeline of proposed method using a Gaussian-weighted distance map 

First, our 3D IRG starts by choosing a seed voxel at (0, 0, 0) on whole volume and 
compares seed voxels with neighboring voxels. Region is grown from the seed voxel 
by adding neighboring voxels that are less than chosen tolerance. When the growth of 
region stops, this region is background except head. Then we simply segment the 
head by inverse operation. Thus our 3D IRG segments the head automatically without 
holes and the distortion of edges by morphological operations in PET and CT images. 
Fig. 2 shows the comparison of threshold-based method and our 3D IRG method in 
PET and CT brain images. In Fig. 2(a) and (c), we can easily see holes inside of the 
head, whereas our method can clearly segment the head without holes as shown in 
Fig. 2(b) and (d). 

 
(a)           (b)                             (c)                    (d) 

Fig. 2. The comparison of head segmentation between threshold-based method and 3D IRG 
method in PET and CT brain images (a) and (c) shows the results of the threshold-based 
method in PET and CT brain images, respectively. (b) and (d) shows the results of our 3D IRG 
method in PET and CT brain images, respectively. 

2.2   Non-head Elimination Using Region Growing-Based Labeling 

Although the 3D IRG segments the head without holes, the non-head regions having 
the intensities which are similar to the head can be segmented on background area. 
Since the size of these non-head regions is small in comparison with the head, we 
propose a region growing-based labeling (RGL) to efficiently eliminate the non- head 
regions by removing other regions except the largest region.  

Our RGL finds the position of 1’s voxel for choosing the seed on the binary images 
while scanning from position at (0, 0, 0) to whole volume size. The region is then 
grown from the seed voxel by adding neighboring voxels based on connectivity and 
the voxels of growing region are given to label. When the growth of region stops, we 
identify the size of label. Since the RGL doesn’t require any equivalence table and 
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renumbering of label, Our RGL provides efficient labeling in comparison with a 
conventional connected component labeling [7] in memory use and time complexity. 
As shown in Fig. 3(a) and (c), non- head regions are included in PET and CT brain 
images. Fig. 3(b) and (d) shows the results of the head without the non-head regions 
removed by the RGL in PET and CT brain images, respectively. 

 
(a)        (b)              (c)      (d) 

Fig. 3. The results of the non-head elimination using our RGL method (a) PET brain images (b) 
the results of non-head elimination in the PET brain image (c) CT brain images (d) the result of 
non-head elimination in the CT brain image 

The feature points are extracted from the binary segmentation images by applying 
a conventional sharpening filter [7]. Since the holes within head area or the non-head 
regions in background area are filled or eliminated by 3D IRG and RGL, the feature 
points are selected from the only head boundary. Fig. 4 shows the feature points of 
head extracted from PET and CT images, respectively. 

  
(a)                                                               (b) 

Fig. 4. The feature points of head extracted from PET and CT images (a) PET slice (b) CT slice 

2.3   Feature Points Extraction and Gaussian-Weighted Distance Map  
        Generation 

A conventional surface registration is likely to lead the similarity measure to converge 
on the local optimum near to global optimum since the correspondence of the feature 
points extracted from PET images can differ from the feature points of CT images. To 
prevent this occurrence we propose the 2D Gaussian-weighted distance map 
(GWDM) to robustly converge on global optimum even in blurry and noisy images as 
well as in a large geometrical displacement.  

Our 2D GWDM is generated by assigning the Gaussian-weighted mask to the 
corresponding feature points. If the current weighting is larger than the weighting of 
neighbor feature points, the previous weighting is changed to the current one. In our 
method, GWDM is generated only for CT images. The Gaussian-weighted mask is 
defined as Eq. (1).  
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where σ  is set in proportion to the mask size as a standard deviation. λ  is a scaling 
parameter. xc  and yc is the center of the Gaussian-weighted mask. The weighting of 

mask is very large at center, and is reduced in proportion to the distance far from 
center depending on Gaussian curve. G is the Gaussian-weighted mask. 

Fig. 5 shows the process for the generation of GWDM in CT brain image. Fig. 5(a) 
and Fig. 5(b) show the Gaussian-weighted curve and mask with 13 by 13 size, λ =1, 
σ =3.0, respectively. Fig. 5(c) shows the extracted feature points. Fig. 5(d) shows the 
GWDM generated from feature points. Fig. 5(e) shows the weighting of the GWDM 
in a magnification of Fig. 5(d). The area corresponding to feature points has the 
brightest intensities while the area far from feature points has dark ones. 

 
(a) (b) 

     
(c)               (d)                      (e) 

Fig. 5.  The generation of a 2D GWDM in CT brain image (a) the Gaussian curve (b) the 
Gaussian-weighted mask (c) the feature points of head (d) 2D GWDM (e) magnification of (d) 

2.4   Weighted Cross-Correlation and Optimization 

For similarity measure between the feature points of PET images and the GWDM of 
CT images, we propose the weighted cross-correlation (WCC). Our approach reduces 
the computation time because of using the only GWDM of CT images corresponding 
to the feature points of PET images instead of using whole CT volume. The WCC is 
defined as Eq. (2). 
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where PETN and )(iPPET  are the total number of feature points and the position of i-th 

feature point in PET images, respectively. Tr  is rigid transformation matrix 
transforming  feature points of PET images into the coordinate system of CT images. 

CTG  is the GWDM of CT images corresponding feature points in PET images. λ  is a 

scaling parameter. 
In order to search for the optimal location, we find optimal parameters such as Tx’, 

Ty’, Tz’, Rx’, Ry’, Rz’ when the WCC reaches maximum as following Eq. (3). Powell’s 
multidimensional direction method is then used to maximize WCC. This method 
searches for optimal location in the order following Tx, Ty, Rz, Rx, Ry, Tz until WCC 
doesn’t change any more and iterate over constant number.  

)(maxarg)',',',',','( WCCRRRTTT zyxzyx =  (3) 

3   Experimental Results 

All our implementation and test were performed on an Intel Pentium IV PC 
containing 3.2 GHz CPU and 2.0 GBytes of main memory. Our method has been 
successfully applied to five clinical datasets and two software phantom datasets, as 
described in Table 1, for evaluating with the aspects of visual inspection, accuracy, 
robustness, and computation time. 

Table 1. Experimental datasets 

Dataset CT/PET 
Image  
size 

Slice 
number 

Voxel Size 
(mm) 

Slice spacing 
(mm) 

Intensity 
range 

CT 512×512 158 0.38×0.38 1.0 0 ~ 4095 Patient1 
FDG-PET 128×128 40 1.95×1.95 3.33 0 ~ 255 

CT 512×512 35 1.17×1.17 5.00 -976 ~ 1642 Patient2 
FDG-PET 128×128 82 2.00×2.00 2.00 0 ~ 4095 

CT 512×512 34 1.17×1.17 5.00 48 ~ 2857 Patient3 
FDG-PET 128×128 45 4.00×4.00 4.00 0 ~ 4095 

CT 512×512 28 1.17×1.17 5.00 -976 ~ 1933 Patient4 
FDG-PET 128×128 80 2.00×2.00 2.00 0 ~ 4095 

CT 512×512 37 1.17×1.17 5.00 48 ~ 4048 Patient5 
FDG-PET 128×128 53 4.00×4.00 4.00 0 ~ 4095 

CT 128×128 40 1.95×1.95 3.33 0 ~ 2224 Software 
phantom1 FDG-PET 128×128 40 1.95×1.95 3.33 0 ~ 4095 

CT 128×128 40 1.95×1.95 3.33 498 ~ 2721 Software 
phantom2 FDG-PET 128×128 40 1.95×1.95 3.33 0 ~ 4095 

As shown in Fig. 6, PET software phantom datasets simulate background, tissue, 
and brain in the head and are generated by using Gaussian smoothing for blurry 
properties. The standard deviation of Gaussian smoothing in PET software phantom1 
and phantom2 are 1.0 and 2.0, respectively. CT software phantom datasets simulate 
four areas such as background, tissue, muscle, and skull. In particular, the Gaussian 
noise with standard deviation 20.0 is added to CT software phantom2. We can see 
that software phantom2 shown in Fig. 6(c) and (d) are more blurry and noisy than 
software phantom1 shown in Fig. 6(a) and (b). 
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(a)                               (b)                              (c)                              (d) 

Fig. 6. Software phantom datasets for accuracy and robust evaluation (a) PET software 
phantom1 (b) CT software phantom1 (c) PET software phantom2 (d) CT software phantom2 

Fig. 7 and Fig. 8 show the comparison of 2D visual inspection and 3D fusion 
before and after registration. In Fig. 7, the results of 2D visual inspection are 
displayed by fusing skull edges of CT images and transformed PET brain images in 
axial, coronal, and sagittal planes together, whereas Fig 8 fuses brain boundary of 
PET images on the CT images. While the top row of Fig. 7 and Fig. 8 applying scale 
parameters before registration are misaligned between PET brain images and CT 
images, the bottom row of Fig. 7 and Fig. 8 applying optimal parameters after 
registration are well aligned within skull area of CT image. Fig. 7(d) and Fig. 8(d) 
show the brain in arbitrary 3D view before and after registration. Fig. 9 shows the 
aligned results in arbitrary 2D plane and 3D view of clinical datasets after 
registration. 

    

    

(a)     (b)         (c)      (d) 

Fig. 7. The comparison of 2D visual inspection and 3D fusion before and after registration in 
clinical dataset1 (a) axial plane (b) coronal plane (c) sagittal plane (d) 3D fusion 

The registration accuracy of our method is evaluated by comparing with the 
conventional ones such as mutual information (MI)-based registration, chamfer 
distance matching (CDM), and feature-based cross-correlation (FCC). For the 
evaluation, we use the software phantom with the known parameters, called as true 
transformations. In order to quantify the registration error shown in Table 2, we 
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(a)     (b)         (c)      (d) 

Fig. 8. The comparison of 2D visual inspection and 3D fusion before and after registration in 
clinical dataset2 (a) axial plane (b) coronal plane (c) sagittal plane (d) 3D fusion 

 

 

Fig. 9. The results of 2D visual inspection and 3D fusion of clinical datasets after registration 

compute each RMSE for translations and rotations as Eq. (4) between estimated 
parameters and true transformations. At this time, the feature points of head are 
extracted by applying proposed IRG and RGL for comparing our WCC with CDM or 
FCC in same environments. The use of MI for accuracy test is restricted to the 
intensities of whole volume without extracting the feature points of head, and is not 
included sampling and multi-resolution optimization. 
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In our method, T-RMSE and R-RMSE are less than 0.1mm and 0.4°, respectively 
in two software phantom datasets and give better accuracy than the conventional ones. 
In particular, MI shows a large different in software phantom2. This means that MI 
has a limitation in exact alignment when blurry and noisy images are aligned. 
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Table 2. Accuracy results using the software phantom with the known parameters 

Dataset Method 
Tx

 

(mm) 
Ty

 

(mm) 
Tz 

(mm) 
Rx 

( ° ) 
Ry 

( ° ) 
Rz

 

( ° ) 

T-
RMSE 
(mm) 

R-
RMSE 

( ° ) 
TRUE 10.73 12.48 -10.14 -4.8 -5.2 7.3 - - 
WCC 10.72 12.46 -10.19 -4.74 -5.01 7.21 0.03 0.12 

MI 10.71 12.64 -10.34 -5.31 -5.55 7.67 0.14 0.42 
CDM 11.46 12.07 -9.75 -4.38 -6.13 4.50 0.53 1.72 

Software 
Phantom

1 
FCC 7.87 8.72 -9.09 -5.69 0.67 4.04 2.79 3.91 

TRUE -6.83 -8.58 6.24 4.8 -3.2 -6.3 - - 
WCC -6.75 -8.59 6.39 4.43 -2.69 -6.19 0.10 0.37 

MI -7.80 -8.85 5.85 5.62 -5.46 -7.12 0.63 1.47 
CDM -6.22 -8.53 6.70 4.19 1.00 -4.88 0.44 2.58 

Software 
Phantom

2 
FCC -13.07 -2.33 0.76 2.66 -11.98 0.07 5.99 6.38 

For robustness test, we evaluated whether the WCC similarity measure searches for 
optimal location against the noise in software phantom1 with a large geometrical 
displacement. White zero-mean Gaussian noise with standard deviation 0, 100, 300, 
and 500 is superimposed onto the only CT software phantom1. As shown in Fig. 10, 
increasing the noise level does not affect the maximal WCC at optimal location (0mm 
or 0°), as the position of maximal WCC in traces computed for all six optimal 
parameters is not changed when the amount of noise is increased. This means that our 
WCC leads to a global maximum using the GWDM even though feature points 
extracts differently between PET and CT brain images due to blurry or noisy 
properties. 

The total computation time including 3D fusion in two software phantom datasets 
is measured by comparing our method with conventional ones in Table 3. Our method 
gives similar computation time to the CDM and FCC and much faster than the MI-
based registration. 

Table 3. Total computation time 
(sec)  

 WCC MI CDM FCC 

Software-phantom1 8.234 391.843 8.579 8.062 
Software-phantom2 8.406 407.734 8.687 7.890 

 
(a)                                                                   (b) 

Fig. 10. The robustness test of WCC in software phantom1 added the Gaussian noise with 
standard deviation 0, 100, 300, 500 (a) translation of x-direction in the range from -60 to 60 mm 
(b) rotation around z-axis in the range from -30 to 30° 
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4   Conclusion 

We have developed an accurate and robust surface registration method using a 
Gaussian-weighted distance map for brain PET-CT fusion. Our 3D IRG segmented 
the head without any additional processing such as hole filling. The proposed RGL   
eliminated efficiently the non-head regions in comparison with the conventional 
connected component-based labeling. Our GWDM led our similarity measure to 
robust convergence on the optimal location even though feature points extract 
differently between PET and CT brain images due to blurry or noisy properties. The 
WCC rapidly measure the similarities because of considering the GWDM of CT 
images corresponding to the feature points extracted from PET images instead of 
using whole volume of CT images. Experimental results showed that our method was 
much faster than MI and more accurate than conventional registration methods such 
as MI, CDM, and FCC. In particular, our method was robustly registered at optimal 
location regardless of increasing noise level. 
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