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Abstract. In this research we propose to use phoneme spotting to im-
prove the results in the generation of a cryptographic key. Phoneme
spotting selects the phonemes with highest accuracy in the user classifi-
cation task. The key bits are constructed by using the Automatic Speech
Recognition and Support Vector Machines. Firstly, a speech recogniser
detects the phoneme limits in each speech utterance. Afterwards, the
support vector machine performs a user classification and generates a
key. By selecting the highest accuracy phonemes for a a set of 10, 20, 30
and 50 speakers randomly chosen from the YOHO database, it is possible
to generate reliable cryptographic keys.

1 Introduction

The key generation based on biometrics is now acquiring more importance since
it can solve the problems of traditional cryptosystems authentication. For in-
stance, the automatic speech key generation can be applied for secure telephone
calls, file storage, voice e-mail retrieval and digital right management. The ne-
cessity of having a key which can not be forgotten, and that can be kept secure is
one of the main goals of today key generation. Current biometric authentication
uses the intrinsic attributes of the users to provide solution to this security items
[12].

For the purpose of this research, speech is the biometric used. It was chosen
among the others because it has the flexibility that by changing the uttered
sentence, the key automatically changes. Using the Automatic Speech Recogni-
tion (ASR) it is possible to obtain the starting and ending time of each phoneme
given a utterance and a speech model. Afterwards, a feature adaptation is needed
which can convert a set of vectors in a characteristic and final feature. Finally,
a user classification task is performed by the Support Vector Machine (SVM).

Monrose et. al [6] showed a first method in which a partition plane for the
feature vector space was suggested to generate binary biometric keys based on
speech. However, a plane that can produce the same key is difficult to find due
to the fact that infinite planes are possible. A more flexible way to produce a
key - in which the exact control of the assignation of the key values is available
- is always attractive. The main challenge of the general research is to find a
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suitable method to generate a cryptographic-speech-key that should repeatedly
generate the same key every time a user produces the same utterance under
certain conditions.

Therefore, the objective of this proposal is to improve the accuracy results in
a cryptographic key generation task by using the phoneme spotting. In a similar
way ASR uses word spotting to find key words, it is possible to use phoneme
spotting [I5]. In our case, it is used to make a selection of the highest phoneme
accuracies. The phoneme spotting has the ability to locate a set of key phonemes
(meaning the phonemes with the highest accuracy) during the training stage.
However, selecting the phonemes with highest performance has the drawback
that larger pass phrases are required. This issue is not a real problem since the
system performs much better, and the pass phrases are not being memorised by
the user (the system can give a random sentence that a user can utter).

The system architecture is depicted in Figure [l and will be discussed in the
following sections. The part under the dotted line shows the training phase that
is performed offline. The upper part shows the online phase. In the training
stage the speech processing and recognition techniques are used to obtain the
model parameters and the starts and ends of the phonemes in each user utter-
ance. Afterwards, using the model parameters and the phoneme segmentation,
the feature generation is performed. Next, the Support Vector Machine (SVM)
classifier and the phoneme selection produces its own new model according to a
specific kernel and bit specifications. From all those models, the ones that give
the highest results per phoneme are selected and compose the final SVM model.
Finally, using the last SVM model the key is generated. The online stage is sim-
ilar to the training, but a filtering of the unwanted phonemes is also included.
This scheme will repeatedly produce the same key if a user utters the same pass
phrase.
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2 Speech Processing and Phoneme Feature Generation

The ASR is one of the most important parts of our research. Firstly, the speech
signal is divided into short windows and the Mel frequency cepstral coefficients
(MFCC) are obtained. As a result an n-dimension vector, (n — 1)-dimension
MFCCs followed by one energy coefficient is formed. To emphasize the dynamic
features of the speech in time, the time-derivative (A) and the time-acceleration
(A?%) of each parameter are calculated [11].

Afterwards, a forced alignment configuration of an ASR is used to obtain a
model and the starts and ends of the phonemes per utterance. For this research,
the phonemes were selected instead of words since it is possible to generate larger
keys with shorter length sentences.

In this training phase the system learns the patterns that represent the speech
sound. Depending on the application the units can be words, phonemes, or syl-
lables. The Hidden Markov Model (HMM) is the leading technique for acoustic
modelling [10]. An HMM is characterised by the following, see Figure

A ={a;j},a;; = Prob{q; at t + 1|¢; at t} state transition probability distri-
bution

B = {b;(04)},b;(0) = observation probability distribution

m = {m;} = Prob{q; at t = 1} initial state distribution

O ={01,04,...,0p} = observation sequence (input sequence)

T = length of observation sequence

Q ={q1,q2,...,qn} hidden states in the model

N = number of states

The compact notation A = (A, B, ) is used to represent an HMM [9]. The
parameter set N, M, A, B, and 7 is calculated using the training data and it
defines a probability measure Prob(O|\).

The resulting model has the inherent characteristics of real speech. The out-
put distributions of the HMM are commonly represented by Gaussian Mixture
Densities with means and covariances as important parameters, see Figure Bl
Depending on the application one or more Gaussians can be included per state.
But also, one or more states are also possible for a given reference sound. To
determine the parameters of the model and reach convergence it is necessary
to first make a guess of their value. Then, more accurate results can be found
by optimising the likelihood function and using Baum-Welch re-estimation al-
gorithm.

Assuming the phonemes are modelled with a three-state left-to-right HMM,
and assuming the middle state is the most stable part of the phoneme represen-
tation, let,

1 K
Ci = K;WlGl, (1)
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Fig. 2. Left-to-right HMM, 1...6 states, a transition probabilities, b output probabili-
ties, O observation sequence
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where G is the mean of a Gaussian, K is the total number of Gaussians available
in that state, W is the weight of the Gaussian and i is the index associated to
each phoneme.

Given the phonemes’ starts and ends, the MFCCs for each phoneme in the
utterances can be arranged forming the sets R}, where ¢ is the index associated
to each phoneme, j is the j-th user, and u is an index that starts in zero and
increments every time the user utters the phoneme i.

Then, the feature vector is defined as

by = m(Ri;) = Ci

where p(R};) is the mean vector of the data in the MFCC set R}!;, and C; € Cp
is known as the matching phoneme mean vector of the model. Let us denote the
set of vectors,

DP = {wg,j ‘ VU,]}

where p is a specific phoneme.
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Afterwards, this set is divided in subsets: D" and D}**. 80% of the total
D, are elements of DI and the remaining 20% form D[**. Then, D" =
{[ i bpgl |V u, i} where by, ; € {—1,1} is the key bit or class assngned to the
phoneme p of the j-th user.

3 Support Vector Machine

The classifier named Support Vector Machine (SVM) Classifier is a method used
for pattern recognition, and was first developed by Vapnik and Chervonenkis
[113]. Although SVM has been used for several applications, it has also been
employed in biometrics [8f7]. For this technique, given the observation inputs
and a function-based model, the goal of the basic SVM is to classify these inputs
into one of two classes. Firstly, the following set of pairs are defined {z;,y;};
where z; € R™ are the training vectors and y; = {—1,1} are the labels. The
SVM learning algorithm finds an hyperplane (w,b) such that,

min w w+C’2:§2

@i,b,6 2

subject to y;(wh é(z;) +b) >1 ¢
§& >0

where &; is a slack variable and C' is a positive real constant known as a tradeoff
parameter between error and margin.

To extend the linear method to a nonlinear technique, the input data is
mapped into a higher dimensional space by function ¢. However, exact specifi-
cation of ¢ is not needed; instead, the expression known as kernel K(z;,z;) =
&(z;)T p(x;) is defined. There are different types of kernels as the linear, poly-
nomial, radial basis function (RBF) and sigmoid. In this research, we study just
SVM techinque using radial basis function (RBF) kernel to transform a feature,
based on a MFCC-vector, to a binary number (key bit) assigned randomly. The
RBF kernel is denoted as K (x;,x;) = e(Mlzi=2il*)  where v > 0.

The methodology used to implement the SVM training is as follows. Firstly,
the training set for each phoneme (D;’"‘””) is formed by assigning a one-bit
random label (b, ;) to each user. Since a random generator of the values (-1
or 1) is used, the assignation is different for each user. The advantage of this
random assignation is that the key entropy grows significantly. Afterwards, by
employing a grid search the parameters C' and v are tuned.

The SVM average classification accuracy is computed by the ratio

«

=g (2)

where « is the number of times that the classification output matches the correct
phoneme class on the test data and § is the total number of phonemes to be
classified.
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By performing the statistics and choosing an appropiate group of phonemes
that compute the highest results in the trainning stage, with output Dz’;’””, a
key with high performance can be obtained. Just this selection of phonemes will
be able to generate the key in the test stage.

Finally a phoneme feature filtering is performed using D/**. The sets D"
are computed according to the models obtained in the training phase. This
research considers just binary classes and the final key could be obtained by
concatenating the bits produced by each selected phoneme. For instance, if a
user utters three phonemes: /F/, /AO/, and /R/, and just /F/ and /R/ are
selected the final final key is K = {f(D/p/), f(D;r/)}. Thus, the output is
formed by two bits.

4 Experimental Methodology and Results

For the purpose of this research the YOHO database was used to perform the
experiments [2/4]. YOHO contains clean voice utterances of 138 speakers of dif-
ferent nationalities. It is a combination lock phrases (for instance, ” Thirty-Two,
Forty-One, Twenty-Five”) with 4 enrollment sessions per subject and 24 phrases
per enrollment session; 10 verification sessions per subject and 4 phrases per ver-
ification session. Given 18768 sentences, 13248 sentences were used for training
and 5520 sentences for testing.

The ASR was implemented using the Hidden Markov Models Toolkit (HTK)
by Cambridge University Engineering Department [5] configured as a forced-
alignment automatic speech recogniser. The important results of the speech
processing stage are the twenty sets of mean vectors of the mixture of Gaus-
sians per phoneme given by the HMM and the phoneme segmentation of the
utterances. The phonemes used are: /AH/, /AX/, /AY/, /EH/, /ER/, /EY/,

JF/, /W, /IY/,/K/, N/, R/, /S, [T/, JTH/, [UW/, /V/, /W/. Following
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Fig. 4. HMM for a sound unit
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the method already described, the D, sets are formed. It is important to note
that the cardinality of each D, set can be different since the number of equal
phoneme utterances can vary from user to user. Next, subsets D;’"’”” and fo“"t
are constructed. For the training stage, the number of vectors picked per user
and per phoneme for generating the model is the same. Each user has the same
probability to produce the correct bit per phoneme. However, the number of
testing vectors that each user provided can be different.

Following the method a key bit assignation is required. For the purpose of this
research, the assignation is arbitrary. Thus, the keys have liberty of assignation,
therefore the keys entropy can be easily maximised if they are given in a random
fashion with a uniform probability distribution.

The classification of vectors DI and D}* was performed using SVMlight
[14]. The behaviour of the SVM is given in terms of Equation 2

Using the principle of phoneme spotting, the phonemes with the highest
accuracy and its SVM model are selected. The accuracy results 1 are computed
for the selected phonemes. The statistics were computed as follows: 500 trials
were performed for 10 and 20 users, and 1000 trails were performed for 30 and
50 users. Afterwards, the models that developed the lowest accuracy values are
removed. The results for 10, 20, 30 50 users are depicted in Figure @l

As shown, using phoneme spotting the results become better for all the cases.
For instance, for 10 users the key accuracy goes from 92.3% to 95.9%. This is also
the behaviour for the different number of users. The most complex experiment
was performed using 50 users, but the result shows that 90% accuracy can be
achieved.

If less phonemes are taken in account it is possible to compute keys with high
accuracies. However, it has the drawback that when just a few phonemes are
taken in account the utterances should be larger enough to have cryptographic
validity. We have choosen to stop in 8 phonemes, so it is possible to have realiable
combinations of phonemes to create the key.

5 Conclusion

We presented an scheme to improve the generation of a cryptographic key from
speech signal. With this method we showed that an improvement is possible if
just a selection of phonemes (phoneme spotting) is used in the training phase.
Results for 10, 20, 30 and 50 speakers, from the YOHO database, were shown.

For future research, we plan to study the clustering of the phonemes to
improve the classification task. It is also important to improve the SVM kernel or
use artificial neural networks. Moreover, it is important to study the robustness
of our system under noisy conditions. Besides, future studies on a M-ary key
may be useful to increase the number of different keys available for each user
given a fixed number of phonemes in the pass phrase.
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