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Abstract. This paper is about an evaluation for a feature selection
strategy for mammogram classification. An earlier solution to this prob-
lem is revisited, which constructed a supervised classifier for two prob-
lems in mammogram classification: tumor nature, and tumor geometric
type. The approach works by transforming the data of the images in a
wavelet basis and by using a minimum subset of representative features
of these textures based in a specific threshold (λT ). In this paper differ-
ent wavelet bases, variation of the selection strategy for the coefficients,
and different metrics are all evaluated with known labelled images. This
is a suitable solution worth further exploration. For the experiments we
have used samples of images labeled by physicians. Results shown are
promising, and we describe possible lines for future directions.

1 Introduction

In a pattern recognition approach, the features used to represent the classes must
be significative to characterize them with precision and to contribute positively
towards the classification process. In the case of images, a transformation of
pixels to a different space can help to untangle the meaningful information.

An early diagnostic for medical treatment is very important to total or partial
cure. This can avoid the surgical removal of a breast. A common method of
diagnosis is by using a Mammogram, which is basically an x-ray of the breast
region that displays points with bigger intensities. From the image a trained
physician screens it searching for artifacts that could be a sign for the presence
of a benign or malign tumor. However suspicious areas appear as almost free
shapes and this a challenging for pattern recognition approaches. Besides there
are vessels and muscles which are more or less prominent in the images depending
on the patient. The variation of images in a class and among considered classes
is a factor that will influence directly the problem treated in this paper.

We proposed a solution to this in a previous paper [3] using feature sets with
100, 200, 300 and 500 features to represent each image class. In this paper we re-
port on an strategy to select the wavelet features to be used n the classification,
and further it is shown a protocol of tests evaluating the features chosen on two
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mammogram classification problems: 1) Type(Benign or Malign) and presence
of tumor; and 2) Shape of the Artifacts Distribution in he Mammogram. Con-
siderable advances in this paper are achieved if compared with [3], because of
the reduction of the dimensions in space and successful classification rates. This
reduction is provided by a new strategy to select the most significant features
based on standard deviation of classes by a specific threshold λT .

A mammogram classifier is constructed and evaluated using a wavelet de-
composition process and a selected subset of representative features. The ex-
periments performed show that successful classification can be achieved, even
when we consider the two main problems: 1) Classification between normal, be-
nign, and malign areas; 2) Classification between normal, microcalcifications,
radial or spiculated, and circumscribed areas. Section 2 shows the images of typ-
ical mammograms and its target classes, along with a revision of literature on
mammograms classification. Section 3 defines the problem in terms of a pattern
recognition framework and presents a proposed approach for its solution. Section
4 shows experiments on images taken from MIAS [4]. Section 5 gives conclusions
and points to future extensions.

2 Mammograms

A mammogram is an x-ray of breast obtained by compression of the breast of pa-
tients between two acrylic plates for a few seconds. Thus a typical mammogram
is an intensity image with gray levels, showing the levels of contrast inside the
breast which characterize normal tissue, vessels, different masses of calcification,
and of course noise. This type of image is used by physicians because it is cheap
and it allows the discovery of breast cancer that is not perceived in a touch ver-
ification. An example of a mammogram and a machine used for obtaining this
type of image are shown in Figure 1 a) and b), respectively.

Some calcifications can be grouped in classes due their similar geometrical
properties. They are usually named radial or spiculated lesions, circumscribed
masses lesions and microcalcifications. The radial lesions have a centred region
with segments leaving it in many directions. The circumscribed masses lesions
are more uniform, resembling a circle, although still irregular. Finally, the micro-
calcifications constitute small groups of calcified cells without pre-defined form
or size.

Another classification adopted by a physician considers the nature of the le-
sions, such as benign or malign lesions. The distinction between these two classes
is very ill-defined in terms of the images themselves, since what usually a physi-
cian does is to ask for further analysis including other tests for characterizing
the tumor as benign or malign. In terms of an automated classification to be
performed by a computer, a strong evidence of a classification in one of these
classes will be an important result to achieve. Mammograms without any of the
typical artifacts, or abnormalities will be classified as normal cases.

The images used in the experiments were labelled by a physician and they
came from the database of MIAS [4] with original size of 1024x1024 pixels, per
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image, and namely mdbX, where X is a number of the image in the database.
However, the images used in the experiments were crops of size 64x64 pixels per-
formed in the original mammograms, whose centers correspond to the centers of
the presented abnormalities. The images are irregular textures, and with subtle
similarities and differences regarding the classification between radial, circum-
scribed, microcalcifications, and normal; or between normal, benign, and malign.
Figures 5 and 6 show examples of the two classification problems addressed here.

A solution to this whole problem is still a research issue. Some works from
the literature either deal only with the segmentation of mammograms in order
improve visualization and analysis by a physician, or classify subsets of classes.
A review of some work until 1994 can be seen in [9]. We will comment here on
some recent works.

Fig. 1. a) Intensity image of a typical mammogram (mdb184) b) Mammogram machine

In [8] is presented a scheme for analyzing mammograms by using a multires-
olution representation based on Gabor wavelets. The method is used to detect
asymmetry in the fibro-glandular discs of left and right mammograms in order
to diagnose breast cancer. The types of lesions are not dealt with as it is the
approach taken here. In their work a dictionary of Gabor filters is used and the
filter responses for different scales and orientation are analyzed by using the
Karhunen-Loève transform, which is applied to select the principal components
of the filter responses. They show figures of correct classification for asymmet-
ric, distortion, and normal cases. In [7], thermal texture maps are used in early
detection of breast cancer. In this case the relationship between the pattern in
each slice and the metabolic activities within a patient’s body is revealed and the
depth of tumor is estimated by thermal-electric analog and half power point. The
conclusion is based on fact that different tissues have different growth patterns
and this can distinguished the pixels of tumors and blood vessel. This approach
is used to detection of breast cancer and ovarian cancer.

This paper represents the continuity of approach presented in [3] and it shows
the constructing and evaluating of classifier for mammogram using a wavelet
decomposition process for the feature extracting stage. We evaluate a differ-
ent strategy for representative feature selecting is presented by using a specific



An Evaluation of Wavelet Features Subsets for Mammogram Classification 623

threshold (λT ), based on standard deviation of classes. The number of features
is reduced drastically and results shown have high successful rates.

Section 3 next frames the problem in a pattern recognition framework and
presents the details of our approach.

3 The Proposed Approach

In a general way texture can be characterized as the space distribution of the
gray levels in a neighborhood, as in [5], that is to say, the variation pattern of
the gray levels in a certain area. Texture is a feature that can not be defined for
a point, and the resolution at which an image is observed determines the scale
at which the texture is perceived. So, texture is a confusion measurement that
depends mainly on the scale which the data are observed. There are textures
with regularity, deterministic and structured aspects, and others irregular like
the mammograms previously shown. In case of regular textures, some measure-
ments can be used like gray-level co-occurrence matrices to capture the spatial
dependence of gray-levels values. In addition, entropy, energy, contrast and ho-
mogeneity properties can be calculated easily. An autocorrelation function also
can be used for images with repetitive texture patterns because it exhibits peri-
odic behavior with a period equal to spacing between adjacent texture primitives.
However, in our problem, the images are mammograms with irregular textures,
and in addition, the mammogram classes are not homogeneous. Therefore, those
measurements will not be representative for the kind of classes we aim to separate
in an automated mammogram analysis.

We need first to find what features can be useful, and then select possibly
uncorrelated measurements of them. This can be reached by using a wavelet
transform in data, because statistical properties of this kind of transformation
can help to uncorrelate the data as much as possible without losing their main
distinguishable characteristics.

The main contribution of this method is the design and selection of a feature
representation of mammogram that can help in the mammogram classification
process. We use a wavelet transform in data and we reach a dimensionality re-
duction. We propose a selecting strategy of main features subsets that have a
good representation for the elements of each class and they are more separated
in the feature space. A specific threshold (λT ) based on standard deviation of
classes images is used. Extracted and selected features of the decomposed image
are used in the construction of the image signature. We believe that this ap-
proach can be used in other applications that deal with recognition of irregular
textures, like other medical image applications. In order to achieve a separation
among image for experiments, the following conventions are adopted: “Basis Im-
age” for mammogram subset with known classification and “Test Image” for
mammogram subset with unknown classification, used in test stage.
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3.1 Wavelets

The wavelets are functions used as basis for representing other functions, and
once a so called mother wavelet is fixed, a family can be generated by translations
and dilations of it. If we denote a mother wavelet as y(x), its dilations and
translations are

{ψ(x−b
a ), (a, b) ∈ R+ × R},

where a = 2−j and b = k × 2−j, with k and j integers.
The wavelets used in the experiments of this work were implemented following

the multiresolution scheme given by Mallat [6].
A bi-dimensional wavelet can be understood as an one-dimensional one along

axes x and y. In this way applying convolution of low and high pass filters on
the original data, the signal can be decomposed in specific sets of coefficients, at
each level of decomposition, as:

- low frequency coefficients (Ad
2jf);

- vertical high frequency coefficients (D1
2jf),

- horizontal high frequency coefficients (D2
2jf), and

- high frequency coefficients in both directions (D3
2jf).

The Ad
2jf coefficients represent the entry of next level of decomposition. The

decomposition process proposed by Mallat [6] and implemented in our work rep-
resents the pyramidal algorithm for a bi-dimensional wavelet transform. Figure
2 represents the wavelet decomposition process and Figure 3 show an example
of decomposed mammogram.

Fig. 2. Decomposition process for computing a wavelet transform
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Fig. 3. Example of a decomposed mammogram

By having in mind that decomposing the input image with a Wavelet Trans-
form will be a pre-processing step, the approach can be described then in two
main stages as follows.

3.2 First Stage: Building the Classes Signatures

The first stage is based on the Basis Image subset and it is based on the following
steps:

- Mammogram images are decomposed with a chosen wavelet basis (Wi);
- Some low frequency coefficients (CoefClassj) are selected, based on their

magnitude, in the first decomposition level, considering λT as the threshold;
- Signatures of the classes (ClassSigj) are built based on CoefClassj and on

the mean of those coefficients.

The λT threshold is calculated using λ [2] defined as:
λ = σ

√
2logn
n

where σ represents the standard deviation of the class and n represents the
number of images in that class.

The λT threshold is calculated by a mean of the λ thresholds of j classes,
e. g.:

λT =

j�

v=1
λv

j ,
where j represents the number of classes considered.

3.3 Second Stage: Classifying a Mammogram

The second stage is based on the Test Image subset and follows the procedures
presented below:

- An unknown mammogram (Mamok) is decomposed with a chosen wavelet
basis (Wi);

- Some low frequency coefficients (CoefMamok) are selected, based on their
magnitude, in the first decomposition level, considering λT as a threshold;

- In the second stage, CoefClassj coefficients represent the unknown mam-
mogram signature (MamoSigk)
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- Distances between MamoSigk and ClassSigj signatures are calculated by
different metrics. Dj are computed for all classes ClassSigj;

- The unknown mammogram is classified based on the lowest distances Dj .

The distance metrics used in order to measure the proximity between un-
known mammogram and classes signatures are: Euclidean Distance, Norm in
Absolute Value, Mahalanobis Distance and Huffmann Code. The Euclidean Dis-
tance is defined by

DEuclidean =
√∑

i,j

(A(i, j) − M(i, j))2.

The Norm in Absolute Value is represented by

DAbsoluteV alue =
∑
i,j

(A(i, j) − M(i, j)).

A is the matrix that represents the mammogram signature (MamoSigk), M is
the class signature (ClassSigj) and the distance is calculated for all A(i, j) �= 0.
Mahalanobis Distance is defined by

D2
Mahalanobis = (x − m)′C−1(x − m),

where x is the features’ matrix of mammogram that it is to be classified repre-
sented by MamoSigk, m is the matrix of arithmetic mean among all of elements
of the same class, represented by SigClassj, and C−1 is the covariance matrix
of class elements. Huffmann Code is based on the following rules: for an A ma-
trix, for all i and j, we have A(i, j) = 1, if A(i, j) > 0, and A(i, j) = −1, if
A(i, j) < 0, where i is the number of lines and j is the number of columns of
A matrix. Considering that A and B are matrices, the distance between them,
using Huffmann Code is calculated by a sum of “1”, where the sum is calculated
in cases where A(i, j) = B(i, j).

4 Experiments and Analysis of Results

Experiments were accomplished for the two problems: the geometric property
of the tumor, and its nature. The first set of experiments took into considera-
tion the geometric property of the tumor, considering four classes: radial lesions,
circumscribed lesions, microcalcifications and normal areas. The second experi-
ment took into consideration the nature of the tumors, regardless of geometric
property, considering three classes: benign, malign and normal classes.

The images used in this set of experiments are shown by class. Some noisy
images were obtained from original ones and used for testing, namely ndbX,
rdbX and sdbX. The noisy images were obtained by application of three types
of noise: Noisify, Randomize and Spread, corresponding to ndbX, rdbX and
sdnX, respectively. The parameter settings were independent, option of gray
factor equals 10 to Noisify. In case of Randomize, randomization percentile was
100% and 10 number of repetitions. At last, in case of Spread, both horizontal
and vertical spread amount were 10.00.
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The images used for constructing the classes are different from the images
used for classification. Figures 4(a), 4(b) and 4(c) show benign, malign and
normal classes respectively, considering the nature of tumors. Figures 5(a), 5(b),
5(c) and 5(d) show radial lesions, circumscribed lesions, microcalcifications and
normal classes, considering the geometric property of tumor.

We consider the variation of two issues: wavelet basis used in the decom-
position process, and distance metrics. The wavelet bases tested were Haar,
Daubechies 4, Biorthogonal 2.4, Coiflets 2 e Symlets 2. A cross validation process
is performed with 75% of images separated for building the classes signatures
and 25% of them for testing. Four rounds are tested with all of images consider-
ing the mentioned percentages and we present the average results in Tables 3, 4,
5, 6, and 7. Tables 1 and 2 present λT threshold values for each test, considering
the nature and geometrical properties of tumors, respectively.

(a) Benign class (b) Malign class (c) Normal class

Fig. 4. Typical images of the classes for the first mammogram classification problem
considered in this work (Tumor Nature)

(a) Radial class (b) Circumscribed le-
sion class

(c) Microcalcification
class

(d) Normal class

Fig. 5. Typical images for the second classification problem (Tumor Geometrical Type)
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Table 1. λT values, considering nature of the tumors

Round Daubechies 4 Haar Biorthogonal 2.4 Coiflets 2 Symlets 2
1 15 15 14 14 15
2 13 14 12 12 14
3 15 15 14 14 15
4 14 14 12 12 14

Table 2. λT values, considering the geometrical properties of the tumors

Round Daubechies 4 Haar Biorthogonal 2.4 Coiflets 2 Symlets 2
1 15 15 14 14 15
2 17 17 15 15 17
3 15 15 14 14 15
4 17 17 16 16 17

Table 3. Successful rates of classification using Daubechies 4 wavelet basis with nor-
malized data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 95.83 95.83 87.50 95.83
Malign 45.83 33.33 45.83 33.33
Normal 87.50 83.33 87.50 87.50
Radial 56.25 50.00 56.25 50.00

Circumscribed 75.00 75.00 75.00 75.00
Microcalcifications 93.75 93.75 68.75 93.75

Normal 75.00 75.00 87.50 68.75

Table 4. Successful rates of classification using Haar wavelet basis with normalized
data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 91.67 91.67 91.87 91.67
Malign 79.17 70.83 79.17 66.67
Normal 95.83 95.83 100.00 95.83
Radial 75.00 75.00 75.00 75.00

Circumscribed 87.50 87.50 87.50 87.50
Microcalcifications 93.75 93.75 93.75 93.75

Normal 93.75 93.75 100.00 100.00

Table 5. Successful rates of classification using Biorthogonal 2.4 wavelet basis with
normalized data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 75.00 75.00 66.67 83.33
Malign 50.00 29.17 20.83 29.17
Normal 83.33 83.33 95.83 75.00
Radial 75.00 75.00 62.50 75.00

Circumscribed 62.50 62.50 62.50 62.50
Microcalcifications 75.00 62.50 62.50 56.25

Normal 62.50 56.25 81.25 56.25
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Table 6. Successful rates of classification using Coiflets 2 wavelet basis with normalized
data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 87.50 87.50 70.83 87.50
Malign 83.33 58.33 54.17 54.17
Normal 87.50 83.33 95.83 83.33
Radial 81.25 81.25 81.25 81.25

Circumscribed 81.25 81.25 81.25 81.25
Microcalcifications 93.75 93.75 93.75 87.50

Normal 81.25 75.00 93.75 75.00

Table 7. Successful rates of classification using Symlets 2 wavelet basis with normalized
data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 87.50 87.50 83.33 91.67
Malign 79.17 70.83 75.00 54.17
Normal 95.83 95.83 100.00 95.83
Radial 68.75 62.50 75.00 62.50

Circumscribed 81.25 87.50 81.25 87.50
Microcalcifications 93.75 87.50 93.75 81.25

Normal 93.75 93.75 100.00 100.00

The experiments show that the distance metrics used in the classification
process present similar results on average. Euclidean Distance and Norm in Ab-
solute Value show similar successful rates, with the exception of some cases in the
malign class. In some cases, Mahalanobis Distance presents inferior rates when
compared to other metrics. Haar basis achieves better results considering all the
tested classes. The dimensionality of feature space is reduced and the results are
promising for the two mammogram classification problems. Selection of features
by the λT threshold demonstrates its representation capability for choosing the
minimum features subset used for building the signatures of classes. The number
of features used is about of 1.46% of the low frequency coefficients in the first
level of decomposition and 0.37% of total information. Thus relevant information
is concentrated in few low frequency coefficients.

5 Conclusions and Future Works

This paper showed an evaluation of a feature selection strategy for two mam-
mogram classification problems. We see this as a practical and important issue
to be addressed in medical applications. Variations of the problem, considering
tumor nature, and tumor geometric properties are considered. The strategy for
the classification was first presented in [3], and in this work we have used a
threshold, λT , to select the coefficients and have presented experiments in a dif-
ferent number of conditions. The λT threshold was capable to choose signatures
that conduced to a representation that showed successful rates in classification
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process, and with λT it was possible to use a smaller quantity of features that
are useful for mammogram classification problem.

Future extensions of this approach will try to deploy a fully working system
in a medical environment. In addition, we suggest the union of this process of
decision making of classification with medical inference models of diagnosis.
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