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Abstract. We introduce a method to reduce oversegmentation in watershed par-
titioned images, that is based on the use of a multiresolution representation of 
the input image. The underlying idea is that the most significant components 
perceived in the highest resolution image will remain identifiable also at lower 
resolution. Thus, starting from the image at the highest resolution, we first ob-
tain a multiresolution representation by building a resolution pyramid. Then, we 
identify the seeds for watershed segmentation on the lower resolution pyramid 
levels and suitably use them to identify the significant seeds in the highest reso-
lution image. This is finally partitioned by watershed segmentation, providing a 
satisfactory result. Since different lower resolution levels can be used to iden-
tify the seeds, we obtain alternative segmentations of the highest resolution im-
age, so that the user can select the preferred level of detail. 

1   Introduction 

Any image analysis task requires a segmentation step to distinguish the significant 
components of the image, i.e., the foreground, from the background. 

A frequently adopted segmentation technique is based on the watershed transfor-
mation, [1,2]. Basically, watershed transformation originates a partition of a gray-
level image into regions characterized by a common property, such as an almost ho-
mogeneous gray-level distribution. The partition regions are then assigned to either 
the foreground or the background, by taking into account the properties expected to 
characterize the two sets. If the user perceives as more significant the regions with lo-
cally higher (lower) intensity, hence the regions locally lighter (darker), the assign-
ment criterion could be based on the maximal difference in gray-level among adjacent 
partition regions. This problem is still partially open, especially because its solution is 
strongly conditioned by the quality of the image partition.  

Unfortunately, watershed segmentation is generally affected by excessive fragmen-
tation into regions. This, besides requiring a suitable complex process to reduce the 
number of seeds from which the partition originates, may bias the successive assign-
ment of the partition regions to the foreground and the background. We think that an 
effective way to reduce the number of seeds can be found by resorting to multiresolu-
tion representation. If a gray-level image is observed at different resolutions, only the 
most significant regions will be perceived at all resolutions, even if in a more coarse 
way at lower resolution. Regions that, at the highest resolution image, can be inter-
preted as noise or constitute fine details are generally not preserved when resolution 
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decreases. Thus, if the seeds for watershed segmentation of the highest resolution im-
age are identified in a lower resolution level, the resulting partition is expected to be 
characterized by a reduced number of regions, corresponding to the most significant 
image parts. In this communication, we face this problem.  

Starting from a gray-level image, we create a multiresolution representation by 
building a resolution pyramid. To this purpose, we modify the algorithm illustrated in 
[3,4]. Here, we use a different 3×3 mask of weights to compute the gray-level of (par-
ent) pixels at lower resolution, in order to obtain more faithful representations of the 
original input at all resolutions. Then, we identify the seeds for watershed segmenta-
tion at one of the lower resolution levels. These seeds are suitably projected onto the 
highest resolution level of the pyramid and are used to select among the seeds origi-
nally detected at that resolution, only those corresponding to the most significant re-
gions. All other seeds originally found in the highest resolution image undergo a suit-
able removal process, aimed at merging the corresponding partition regions. The 
watershed segmentation of the highest resolution image is finally accomplished, by 
using only the seeds that survived the removal process. Different segmentations are 
suggested for the same image, depending on the pyramid level used to identify the 
seeds to be projected and, hence, on the desired detail of information to be preserved.  

The paper is organized as follows. In Section 2, we briefly discuss the method to 
build the resolution pyramid. In Section 3, we illustrate the process that, starting from 
the seeds identified at a selected lower resolution level, allows us to identify among 
all seeds at the highest resolution, only those regarded as the most significant. In Sec-
tion 4, we show the results of the watershed segmentation of the highest resolution 
image by using seeds computed at lower resolution levels. We also show the results 
obtained after we apply to the partitioned image a method to distinguish the fore-
ground from the background. Finally, in Section 5 we give some concluding remarks. 

2   The Resolution Pyramid  

We consider images where the locally darker regions (i.e., those whose associated 
gray-level is locally lower) constitute the foreground. In our images, gray-levels are in 

the range [0, 255]. Let G1 be a 2n×2n gray-level image. If the input image has a dif-
ferent number of rows/columns, a suitable number of rows/columns is added to build 
G1. Pixels in the added rows/columns are assigned the maximum gray-level present in 
the original image, i.e., are seen as certainly belonging to the background. Through 
this paper, G1 is interpreted as a 3D landscape, where for every pixel in position (x,y), 
its gray-level plays the role of the z-coordinate in the landscape. This interpretation is 
helpful to describe our process in a simple and intuitive way.  

A multiresolution image representation is of interest in many contests, since it pro-
vides from coarse to fine representations of an input image, always preserving the 
most relevant features. In this framework, resolution pyramids are among the most 
common representation systems [5]. We here modify the discrete method [3,4] to 
build a resolution pyramid. In [3,4], we focused both on shift invariance and topology 
preservation. Here, we are still interested in shift invariance and aim at a more faithful 
computation of gray-levels for the parent pixels. 
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Pyramid construction is based on a recursive subdivision into quadrants of G1. At 
each recursion step, resolution decreases by four and, in principle, the process termi-
nates when the image including one single pixel is built. Actually, we do not compute 
resolution levels including less than 32×32 pixels, as they would give too coarse rep-
resentations of G1. For the running example shown in this paper, the base of the 
pyramid, level 1, is the image G1 at full resolution (128×128), the next level of the 
pyramid, level 2, represents the image at a uniformly lower resolution (64×64), and 
the apex of the pyramid is the 32×32 image, which constitutes level 3. We use a 
decimation process involving the use of a partition grid. When the grid is placed onto 
the current resolution image, Gk, the image is divided into blocks of 2×2 children pix-
els, which correspond to parent pixels at the immediately lower resolution level Gk+1. 
Practically, we inspect in forward raster fashion only pixels belonging to even rows 
and columns of Gk, meaning that we use the bottom right child pixel in a block to find 
the coordinates of the parent pixel in Gk+1. Let us indicate with (i,j) the pixel in posi-
tion (i,j). For each inspected pixel (i,j) of Gk, the parent pixel in Gk+1 will be (i/2,j/2).  

 
4 6 4
6 9 6
4 6 4

Fig. 1. The multiplicative mask of weights used to build the pyramid 

To compute the gray-level of the parent pixel (i/2,j/2) in Gk+1, we average the gray-
levels of (i,j) and of its eight neighbors in Gk. Since, the partition grid could be shifted 
on Gk and, hence, any pixel in the 3×3 window centered on (i,j) could be the bottom 
right pixel of the block, we introduce a multiplicative mask of weights to evaluate the 
contribution given by the nine pixels in the 3×3 window centered on (i,j).  

 

   

Fig. 2. The three levels of the pyramid computed for a 128×128 input image 

In this way, the gray-level of (i/2,j/2) will be computed almost independently of the 
position of the partition grid. To this aim, we consider the nine 3×3 windows centered 
on (i,j) and on each of its eight neighbors. Pixel (i,j) is included in all nine windows, its 
horizontal/vertical neighbors are included in six windows and diagonal neighbors in 
four windows. The number of windows including a pixel constitutes the corresponding 
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weight for the multiplicative mask.  See Fig. 1. It can be noted that the weights in our 
mask are practically midway between the Gaussian and the uniform weights. 

The gray-levels computed by using the mask are then normalized to assume values 
in the range [0, 255]. Once the computation of Gk+1 is done, the successive lower 
resolution level is built by the same procedure. The pyramid built for the running ex-
ample is shown in Fig. 2. 

3   Selection of the Significant Seeds 

At each level k, the gradient image ∇k corresponding to Gk is interpreted as a 3D 
landscape. This interpretation is useful to illustrate in a simple manner the paradigm 
on which watershed segmentation is founded. High gray-levels correspond in the 
landscape to mountains, while low gray-levels correspond to valleys. If the bottom of 
each valley is pierced and the landscape is immersed in water, then valleys are filled 
in by water. Filling starts from the deepest valleys and then continues through less and 
less deep valleys. These begin to be filled as soon as the water level reaches their bot-
tom. A dam (watershed) is built wherever water could spread from a basin into the 
close ones. When the whole landscape has been covered by water, the basins are in-
terpreted as the parts into which the landscape is partitioned. 

The regional minima found in ∇k are generally used as the seeds starting from 
which watershed transformation generates a partition of ∇k (and, hence, of Gk) into 
regions characterized by some gray-level homogeneity. See Fig. 3, where the water-
shed lines found by using the regional minima in the three gradient images at the three 
pyramid levels are shown in white. There are respectively 709, 280, and 116 seeds 
(and, hence, basins), for pyramid levels 1, 2 and 3.  We note that the image at level 1 
is affected by excessive fragmentation, caused by the very large number of regional 
minima. Some (heavy) process is generally accomplished to select among the seeds 
found in ∇1 only those that are significant to correctly partition G1. See, e.g., [6].  

 

   

Fig. 3. The watershed lines (white) found at the three pyramid levels starting from the relative 
regional minima, superimposed on the three gray-level images. The found basins are 709, at 
level 1, 280, at level 2, and 116, at level 3.  

Since G1 is well represented even at the lowest resolution level of the pyramid (see 
Fig. 2) and, in turn, the seeds found in ∇3 are considerably less than those found in 
∇1, we will use the seeds found in ∇3 to select among the seeds detected in ∇1 the 
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most significant ones and obtain, in this way, a less fragmented partition of G1. To 
this aim, we project the seeds from level 3 to level 1. This is possible due to the fact 
that our pyramid construction method preserves the links parent-children. Thus, for 
each pixel at level 3 we can easily identify its descendants at level 1. Obviously, since 
any parent pixel at level 3 has four children at level 2 and each of these children has 
in turn four children at level 1, for each seed pixel found in ∇3 we identify a 6×6 
block of descendants in ∇1. See Fig. 4 middle. 

 

         

Fig. 4. Seeds found at level 1, left; descendants at level 1 of the seeds found at level 3, middle; 
descendants remaining after reduction (see text), right  

Our idea is to regard as significant a seed originally detected in ∇1(Fig. 4 left), only 
provided that its associated partition region (Fig. 3, level 1) includes at least one de-
scendant of the seeds found at level 3 (Fig. 4 middle). All other seeds detected in ∇1 

are regarded as non significant and, by means of a flooding process, the corresponding 
partition regions are merged.  

Due to the large size of the sets of descendants originated from the seeds found at 
level 3, still too many seeds would be preserved at level 1. To reduce their number, 
we do the following process. Let M be the number of connected components of de-
scendants, CCDi, found at level 1. In the gradient image ∇1, we inspect the M sets Ci 
of pixels with homologous positions with respect to the pixels of the sets CCDi. In 
each set Ci, we identify and preserve as seeds only the pixels, whose gray-level is 
minimal with respect to the gray-levels of the other pixels of Ci. All other descendants 
are removed (Fig. 4 right). Flooding is then applied at level 1 to merge all partition 
regions that do not include at least one descendant that survived the removal process.  

 

         

Fig. 5. Partition of G1 at level 1 into 133 basins, by using the seeds found at level 3, left, and 
partition of G1 at level 1 into 284 basins, by using the seeds found at level 2, right 
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The watershed lines of the partition of G1, obtained by using the seeds found at 
level 3 to identify the significant seeds at level 1, are superimposed in white on G1 in 
Fig. 5 left. By selecting a different lower resolution level, we can use the seeds found 
there to identify the significant seeds among those detected at level 1. For example, 
by sing the seeds found at level 2 and by applying the same process described above, 
the watershed partition of G1 shown in Fig. 5 right is obtained. 

By comparing the results shown in Figs. 5 and 3, we see that a considerable reduc-
tion of the fragmentation is obtained, as expected. To show that the obtained parti-
tions are significant, we briefly illustrate in the following Section a process that al-
lows us to assign to either the background or the foreground the partition regions. 

4   Region Assignment to Foreground and Background 

The model that we follow to assign the watershed partition regions to either the back-
ground or the foreground is inspired by visual perception. In our gray-level images, 
the foreground is perceived as characterized by locally lower intensity. We assume 
that the border separating the foreground from the background is placed wherever 
strong differences in gray-level occur. Assignment is done by means of a process re-
quiring two steps. A more detailed description of this process can be found in [7].  

The first step of the process globally assigns to the foreground and to the back-
ground the regions characterized by locally minimal and locally maximal average 
gray-levels (valleys and peaks and in the landscape representation).  

 

     

Fig. 6. Foreground components identified in correspondence of the two alternative partitions 
shown in Fig. 5. Gray-tones are related to the significance of the regions (see text). Darker re-
gions are more significant. 

The second step is guided by the maximal gray-level difference ∆ between all pairs 
of adjacent regions. It assigns to the foreground and to the background the partition 
regions placed along the slopes in the landscape. This step is iterated (with a new ∆ 
computed at each iteration) until all regions are assigned. Two cases are possible de-
pending on the number N of adjacent regions with maximal ∆. If N=1, the darker re-
gion in the pair of regions with difference ∆ is (locally) assigned to the foreground, 
while the lighter region is assigned to the background. In fact, in correspondence with 
these two adjacent regions with difference ∆, we assume that a transition from back-
ground to foreground occurs. Based on the same assumption, we (globally) assign to 
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the foreground (background) also all the regions equally dark or darker (equally light 
or lighter) than the region, in the pair of adjacent regions with difference ∆, assigned 
to the foreground (background). If N>1, a conflictual assignment is possible if, for 
any of the pairs characterized by the maximal ∆, say the i-th pair, the darker region, 
say DRi, happens to be lighter of the lighter region, say LRj, in another pair of regions 
characterized by the maximal ∆, say the j-th pair. In fact, DRi should be assigned to 
the foreground, by taking into account the average gray-levels in the i-th pair, but it 
should be assigned to the background, by taking into account the relation between the 
average gray-levels of LRi and DRj. If this is the case, a local process, still based on 
the maximal ∆, is accomplished to assign the regions along the slope including DRi. 
Once the conflictual cases have been treated and all the pairs with the maximal ∆ have 
been locally assigned, the same global process done for N=1 is safely applied.  

A relevance parameter, taking into account the perceptual significance, is also set 
for the regions assigned to the foreground, which allows us to rank foreground com-
ponents. The relevance parameter for regions detected during the first step assumes 
value 1 if the region (i.e., a valley in the landscape representation) has an average 
gray-level smaller than that characterizing all peaks in the landscape (i.e., all regions 
assigned to the background). It assumes value 2 otherwise, meaning that such a val-
ley, though assigned to the foreground, has a perceptual significance smaller than that 
pertaining the other valleys. During the second step, the relevance parameter of a re-
gion assigned to the foreground is set to the number of foreground regions in the 
shortest path, linking that region to the most relevant part in the same foreground 
component. The result of this process applied to the watershed partitions shown in 
Fig. 5 is shown in Fig.6, where darker gray-tones correspond to more significant  
regions. 

 

         

Fig. 7. Result of the segmentation process [6] applied to G1. The final segmentation into 119 
basins, left, and the result of the assignment process to identify the foreground, right. 

If we apply to G1 the high performance, but computationally more expensive, seg-
mentation algorithm [6], we obtain the result shown in Fig. 7. Also in this case, region 
assignment is done by using the algorithm [7]. We can now compare Figs. 6 and 7, by 
using Fig. 7 as a reference. We note that even starting from seeds found at low resolu-
tion (levels 2 and 3 of the pyramid), the results shown in Fig. 6 are comparable with 
those in Fig. 7. Obviously, more details are identified if the seeds are taken at level 2, 
as it is expected because of the higher resolution of level 2 with respect to level 3. 
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5   Conclusion 

We have introduced a method to reduce the excessive fragmentation of gray-level im-
ages into regions, when watershed segmentation is used. Our method is based on the 
use of a multiresolution representation of the input image and on the detection of the 
most significant seeds for segmenting the highest resolution image, guided by the 
seeds found at lower resolution. The underlying idea is that the most significant com-
ponents perceived in the highest resolution image will remain identifiable also at 
lower resolution. Thus, starting from the highest resolution image, we first build a 
resolution pyramid. Then, we identify the seeds for watershed segmentation on one of 
the lower resolution pyramid levels and suitably use them to identify the significant 
seeds in the highest resolution image. This image is finally partitioned by watershed 
segmentation, providing a satisfactory result. Since different lower resolution levels 
can be used to identify the significant seeds at the highest resolution, we obtain alter-
native segmentations of the highest resolution image, among which the user can select 
the best suited one for the specific task. 

The performance of the method has been shown on a sample image only, but we 
have tested our procedure on a large set of biological images. The obtained results 
have been judged as satisfactory by the experts in the field. 
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