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Abstract. Data Grids normally deal with large data-intensive problems on geo-
graphically distributed resources; yet, most current research on performance 
evaluation of resource scheduling in Data Grids is based on simulation tech-
niques, which can only consider a limited range of scenarios. In this paper, we 
propose a formal framework via Stochastic Petri Nets to deal with this problem. 
Within this framework, we model and analyze the performance of resource 
scheduling in Data Grids, allowing for a wide variety of job and data scheduling 
algorithms. As a result of our research, we can investigate more scenarios with 
multiple input parameters. Moreover, we can evaluate the combined effective-
ness of job and data scheduling algorithms, rather than study them separately. 

1   Introduction 

A Data Grid [1] connects a collection of computational and data-resources distributed 
geographically among multiple sites, and enables users to share these resources. To 
use a Data Grid, users typically submit jobs. In order for a job to be executed, two 
types of resources are required: computing facilities, data access and storage. The 
Grid must make scheduling decisions for each job based on the current state of these 
resources. Different job and data scheduling algorithms may bring different perform-
ance for the Data Grid. 

Many research works have been done on the performance evaluation of Data Grids, 
but most of which use simulation techniques, which can only analyze a limited range 
of scenarios. For example, in [2], a special Data Grid simulator, called OptorSim, was 
designed to study the complex nature of a typical Grid environment and evaluate 
various data replication algorithms; in [3], a simulation work was developed to study 
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dynamic replication strategies; in [4], a discrete event simulator, called ChicagoSim, 
was constructed to evaluate the performance of different combinations of job and data 
scheduling algorithms. Furthermore, many related works are based on a single factor 
of job or data scheduling. In [2][3][5], performance is analyzed with the assumption 
that jobs have been allocated to certain computing elements. While in [6-9], perform-
ance is analyzed with the assumption that data have been accessed. The research to 
study the combined effectiveness of job and data scheduling strategies has been 
pointed out to be very complex [10].  

We propose a formal performance evaluation framework that addresses the above 
mentioned issues. Within this framework, we can investigate more scenarios with 
multiple input parameters. Moreover, we can evaluate the combined effectiveness of 
job and data scheduling algorithms, rather than study them separately. 

The rest of the paper is organized as follows. Section 2 describes the general and 
extensible scheduling architecture of Data Grids that we use for our modeling and 
analysis. Section 3 presents the performance model, while Section 4 analyzes the 
performance of the model. We conclude and point to future directions in Section 5. 

2   Architecture 

Our study is based on a general and extensible Data Grid scheduling architecture, 
which is inspired by the work presented in [4], and depicted in figure 1. The logic of 
the architecture can be encapsulated in three distinct modules: 

- Server. Each server comprises a number of processors and storage. Due to the 
heterogeneousness of Grid environments, different server may have a different num-
ber of processors. The processors of a server can only access the local storage. 

- Client. Each client submits jobs to schedulers. Then each job can be allocated to 
any of the servers and further dispatched to any of the processors of a server. Each job 
requires some specific data be available at the local storage before it can be executed. 

- Scheduler. It is the core of the system and can be classified into three schedulers: 
external scheduler (ES), local scheduler (LS), and data scheduler (DS). (1) External 
scheduler. In the system, jobs can be classified depending on their different priority 
levels. Each job is submitted to some ES in terms of its priority. Once an ES receives 
a job, it immediately makes a decision on which server the job should be assigned to, 
according to some scheduling algorithm. It may use the global information, such as 
load of each server, and/or location of the data required by a job, as input to its deci-
sions. (2) Local scheduler. When a job is delivered to some server, it is managed by 
the local scheduler of that server. The LS determines how to schedule the jobs allo-
cated to it, according to its associated scheduling algorithm. It only uses the local 
information, such as load of each local processor, to guide its decisions. (3) Data 
scheduler. Each DS is responsible for determining if and from which server to repli-
cate data according to some algorithm. When a job is allocated to some server, the DS 
in that server will query whether the data required to run the job is already present at 
the local storage. If not, the DS will use the global information, such as the  
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Fig. 1. A Data Grid Scheduling Architecture 

availability of the required data in a remote server, and/or the distance between two 
servers, toreplicate the required data from some remote server to the local storage, 
before the job is executed. 

3   SPN Model 

To study the performance of resource scheduling in Data Grids, we adopt the model-
ing and analysis method, which allows for the performance evaluation in various 
scenarios. We choose the Stochastic Petri Net (SPN) [11] as the base for our study, 
since it is a powerful graphical and mathematical tool that is able to handle priori-
tized, concurrent, asynchronous, stochastic and nondeterministic events. In figure 2, 
we propose a SPN model of the Data Grid scheduling system. 

Suppose there are n classes of jobs, the jobs in each class have the same priority 
level. The priority level values range from 1 (the highest priority) to n (the lowest 
one). Jobs with priority level i are denoted by ri. In accordance, the clients in the sys-
tem are classified into n categories. Each client in class i submits jobs ri to ESi accord-
ing to a Poisson distribution with the same mean arrival rate. 

The system consists of k servers, each of which contains a depository with an infi-
nite capacity for storing data, and may have different compute power. To consider a 

general case, we assume that server x comprises xm  processors, for 1 x k≤ ≤ , and 

each processor provides the exponential distributed service durations with different 
mean rates for different priority-level jobs. In each processor, there are n waiting 
queues of jobs, each for one priority level and with an infinite capacity. Jobs in the 
same waiting queue are managed in FIFO (First-In-First-Out) order. If a job is in the 
turn to be scheduled, it can be executed only when the processor is free and its re-
quired data is available. Each processor can provide service for at most one job at any 
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time, and the jobs from different waiting queues are selected for service according to 
their priorities, i.e., jobs with higher priorities have higher priorities to be executed. 

There are n external schedulers, each for one priority level; k local schedulers, each 
distributed in one server; and k data schedulers, each for one server. 

The meanings of the transitions and the places are described as follows, where 
variable i identifies priority level i (1 i n≤ ≤ ), x and y denote server x (1 x k≤ ≤ ) 

and storage y ( 1 y k≤ ≤ ) respectively, j indicates processor j of server x 

(1 xj m≤ ≤ ), z indicates client z (1 iz l≤ ≤ ). 

- Places. if : the external job assigner, which holds jobs ri; ixa : the transmission 

link from ESi to server x; ixf : the local job assigner of server x, which holds jobs ri; 
x
ijq : the waiting queue, which holds jobs ri in processor j of server x; x

ijw : the running 

state of a job ri at processor j of server x; x
jv : the available state of processor j of 

server x; x
ijg : the place holding execution results of jobs ri in processor j of server x; 

xy
ijsd : the place identifying for the processor j of server x whether the storage y pos-

sesses the data required by jobs ri; 
x
ijdm : the logical module of data manager x, which 

is responsible for jobs ri on the local processor j; xy
ijtd : the transmission link for data 

required by jobs ri, from storage y to processor j of server x; x
ijls : the place holding 

data required by jobs ri, that is already allocated to processor j of server x. 

- Transitions. izc : the exponential transition representing that client z submits jobs 

ri, with mean firing rate iλ ; ixu : the immediate transition denoting that ESi dis-

patches jobs ri to server x, according to some ES algorithm; ixe : the exponential tran-

sition denoting the job transmission from ESi to server x, with mean firing rate ixβ ; 
x
ijd : the immediate transition representing that LSx allocates jobs ri to the local proc-

essor j of server x, according to some LS algorithm; x
ijh : the immediate transition 

which transfers jobs ri in processor j of server x, from waiting state to execution state; 
x
ijs : the exponential transition denoting that processor j of server x runs jobs ri, with 

mean firing rate x
ijµ ; xy

ijud : the immediate transition representing that the data moni-

tor of processor j of server x, which collects data information for jobs ri from storage y 

once the state of storage y changes; xy
ijrd : the immediate transition representing that 

DSx schedules data required by jobs ri, from storage y to processor j, according to 

some DS algorithm; xy
ijod : the exponential transition denoting that the data transmis-

sion for jobs ri, from storage y to processor j of server x, with mean firing rate xy
ijδ . 



36 Y. Li et al. 

.

.

.

M

1
1nw 1

1ns

.

1
1v

M

M

1
11ls1

11dm

1
11w 1

11s1
11d 1

11q 1
11h

11
11rd11

11sd 11
11od

1
11

krd1
11

ksd 1
11

kod

M

.

M

M

1f
11f

kf1

11u

ku1

11e

ke1

11a

ka1

M

M

1

1
nmq

1

1
nmh

1

1
nmw

1

1
nms

1

1
nmd

1

1
nmg

nf
1nf

nkf

1nu

nku

1ne

nke

1na

nka

1
kv

kd11
kq11

kh11
kw11

ks11 11
kg

k
nd 1

k
nq 1

k
nh 1

k
nw 1

k
ns 1 1

k
ng

k

k
mv

1 k

k
md 1 k

k
mq 1 k

k
mh 1 k

k
mw 1 k

k
ms 1 k

k
mg

k

k
nmq

k

k
nmh

k

k
nmw

k

k
nms

k

k
nmd

k

k
nmg

Server 1

Processor 1

Processor 1m

Server k

Processor 1

Processor km

1
11g

1
1ng

M

11c

12c

11lc

M

1nc

2nc

nnlc

11
11td

1
11

ktd

M

1
1
k

nrd

1
1ndm

11
1nrd11

1nsd 11
1nod

1
1nls

1
1
k

nsd
1
1
k

nod

11
1ntd

1
1
k

ntd

11
11ud

1
11

kud

11
1nud

1
1
k

nud

1
1nd 1

1nq 1
1nh

M

1

1
1md

1

1
1mq

1

1
1mh

1

1
1mw

1

1
1ms

1

1
1mg

1

1
1mdm

1

11
1mrd

1

11
1msd

1

11
1mod

1

1
1mls

1

1
1

k
mrd

1

1
1

k
msd

1

1
1

k
mod

1

11
1mud

1

11
1mtd

1

1
1

k
mud

1

1
1

k
mtd

M
1

1
nmdm

1

11
nmrd

1

11
nmsd

1

11
nmod

1

1
nmls

1

1k
nmrd

1

1k
nmsd

1

1k
nmod

1

11
nmud

1

11
nmtd

1

1k
nmud

1

1k
nmtd

M
11
kdm 11

kls

1
11
krd1

11
ksd 1

11
kod

11
kkrd11

kksd 11
kkod

1
11
kud 1

11
ktd

11
kkud 11

kktd

M

1

1
mv

M

1
k
ndm 1

k
nls

1
1

k
nrd1

1
k
nsd 1

1
k
nod

1
kk
nrd1

kk
nsd 1

kk
nod

1
1

k
nud 1

1
k
ntd

1
kk
nud 1

kk
ntd

M
1 k

k
mdm 1 k

k
mls

1
1 k

k
mrd

1 k

kk
mrd

1
1 k

k
msd 1

1 k

k
mod

1 k

kk
msd 1 k

kk
mod

1
1 k

k
mud 1

1 k

k
mtd

1 k

kk
mud 1 k

kk
mtd

M
k

k
nmdm

k

k
nmls

1

k

k
nmrd1

k

k
nmsd 1

k

k
nmod

k

kk
nmrd

k

kk
nmsd

k

kk
nmod

1

k

k
nmud 1

k

k
nmtd

k

kk
nmud

k

kk
nmtd

 

Fig. 2. A SPN Model of the Data Grid Scheduling System 
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4   Performance Evaluation 

In SPN models, performance evaluation is based on steady-state probabilities. Since 
the model is very large and complicated, we adopt an approximate analysis technique 
to reduce the complexity of the model solution, presented as the following steps. 

(1) Refinement. To simplify a complicated model into a relatively compact model, 
by deleting immediate transitions and transferring the enabling predicates associated 
with these immediate transitions to some exponential transitions. 

(2) Decomposition. To decompose a model into several sub-models, by using in-
dependence and interdependence relations of the sub-models. A refined sub-model of 

the original model is generally described in figure 3, denoted as xy
ijA , which repre-

sents the module that job ri is submitted to processor j of server x, and its required 
data is replicated from storage y. The refined complete model is composed of 

( )
1

k

ii
n k m

=
× ×∑  sub-models, which are independent with each other in structure. 

The interdependence relation of these sub-models is embodied by the enabling predi-
cates associated with transitions. 

(3) Iteration. For each sub-model, import parameters are from other sub-models; 
after computed, the solution result is again exported to other sub-models. 

xy
ijc xy

ija xy
ije

xy
ijq

xy
ijs

xy
ijodxy

ijtd xy
ijls

 

Fig. 3. A Refined Sub-Model of the Data Grid Scheduling System 

It follows from the steady-state probabilities that system performance measures can 
be obtained. 

(1) The average throughput for transition t in steady state is: 

( ) [ ] ( )
( )

Pr ,
M H t

T t M t Mθ
∈

= ×∑ , 

where Pr[M] is the steady-state probability of marking M, ( ),t Mθ  is the firing rate 

of transition t in marking M, and H(t) is the subset of reachable markings that enable t. 
(2) The average number of tokens for place q in steady state is: 

( ) ( )PrN q i M q i= × =⎡ ⎤⎣ ⎦∑ . 

Following the above, we consider two important metrics of the Data Grid schedul-
ing system: average system throughput and average job completion duration. 

(1) Average system throughput: 

1

n

i
i

T T
=

=∑ , 
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where Ti is the throughput for job ri and obtained by 

( )
1 1 1

xmk k
xy

i ij
x j y

T T s
= = =

=∑∑∑ . 

(2) Average job completion duration: 

1

n

i i
i

JCD T
JCD

T
=

×
=
∑

, 

where JCDi is the job completion duration for job ri and acquired by 

1

k

i i ix ix i
x

JCD SD PR TD DT
=

= + × +∑ , 

where SDi: the submission duration of job ri from client to ESi, and 

( )
1 1 1

1
xi mk k

xy
ij

x j y

SD

T c
= = =

=

∑∑∑
, 

PRix: the probability of job ri being allocated to server x, and 

( )

( )
1 1

1 1 1

x

x

m k
xy
ij

j y
ix mk k

xy
ij

x j y

T s

PR

T s

= =

= = =

=
∑∑

∑∑∑
, 

TDix: the transfer duration of job ri from ESi to LSx, and 

( )

( )
1 1

1 1

x

x

m k
xy
ij

j y
ix m k

xy
ij

j y

N a

TD

T e

= =

= =

=
∑∑

∑∑
, 

DTi: the delay time of job ri for all servers, and 

( )

( )

( )

( )
1 1 1 1 1 1

1 1 1 1 1 1

x x

x x

m mk k k k
xy xy
ij ij

x j y x j y
i m mk k k k

xy xy
ij ij

x j y x j y

N td N q

DT

T od T s

= = = = = =

= = = = = =

= +
∑∑∑ ∑∑∑

∑∑∑ ∑∑∑
. 

5   Conclusions and Future Work 

In this paper, we construct the SPN model based on a general and extensible schedul-
ing architecture of Data Grids, and further evaluate the system performance. The 
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performance metrics considered in this paper include the system throughput and the 
job completion duration experienced in system. 

In future work, we want to develop an analysis tool to evaluate the performance of 
practical Grids. Particularly, this tool is planned to be able to plug in different algo-
rithms for selecting the best server, the best processor, and the best replication. An-
other area for further research is to study the sensitivities with respect to all system 
parameters, which will be helpful to come up with more reasonable schemes for sys-
tem designs. 
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