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Abstract. This paper proposes a new analytical model of PCS in torus in the 
presence of hot spot traffic pattern. Results from simulation experiments show 
close agreement with those predicted by the analytical model. 

1   Introduction 

Gaughan and Yalamanchili [1] have proposed PCS that combines aspects of Circuit 
Switching (CS) and Wormhole Switching. When a message header encounters 
blocking and cannot progress towards its destination, it releases the last reserved 
channel by backtracking to the previous node, and then continues its search from that 
node to find an alternative path. Recent studies [2, 3] have revealed that the 
performance advantages of adaptive routing are more noticeable when traffic is non-
uniform due to the presence of hot spots [4]. This paper proposes a new analytical 
model of PCS for computing the average message latency in the presence of hot spot 
traffic in torus. 

2   The Analytical Model 

PCS and the router structure are discussed in detail in [1, 3]. The model is based on 
the following assumptions.  

i)  The traffic model is based on Pfister and Norton approach [4]. In their method, 
each generated message has a finite probability θ of being directed to the hot spot 
node and probability (1-θ ) of being directed to other network nodes. We usually 
refer to these types of messages as hot spot and regular, respectively. 

ii)   Nodes generate traffic independently of each other, which follows a Poisson 
process with a mean arrival rate of λg messages per node per cycle including 
regular and hot spot fractions, θ λg and (1-θ λg), respectively. Message length is 
M flits, each of which requires one cycle to cross from one node to the next. 

iii)  L virtual channels (L≥1) are used per physical channel.  
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The average message latency is composed of the average network latency,T , and 
the average waiting time seen by a message at the source node, W . However, to 
capture the effects of virtual channels multiplexing, the average message latency has 
to be scaled by a factor, L , representing the average degree of virtual channels 
multiplexing that takes place at a given physical channel. Therefore, we can write [2]  

θθθ TT)1(TwhereL)WT(Latency r +−=+=  (1) 

In the above equation, rT and θT denote the average network latency for regular and 

hot spot messages, respectively. The average number of hops that a regular message 
makes across one dimension and across the network, k  and rd  respectively, are [3] 

k2d,2/)1k(k r =−=  (2) 

Since each regular message travels, on average, rd  hops to cross the network, the rate 

of regular messages received by each channel, λr, can be written as  

4c)1(2d)1( rgrgr λθλθλ −=−=  (3) 

Where, rc  is the average time needed to setup a path for a regular r-hop header. The 

number of source nodes for which one of 2Nj-1 channels can act as intermediate 
channel to reach the hot spot node is given by [2]  
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The overall traffic rate, on the channel located j hops from the hot spot node, is  

where
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In the above equation, each node generates, on average, θ λg hot spot messages in a 
cycle, and

jθλ is the rate of hot spot traffic on a channel located j hops away from hot 

spot node. In PCS, the network latency of an r-hop regular message can be written as  

rr crMT ++=  (6) 

The latency seen by a hot spot message that is j hops a way from the hot spot node is 

θθ cjMT
j

++=  (7) 

Where, θc  is the average time needed to setup a path for a hot spot message header. 

When a regular (or hot spot) message reaches a channel that is j hops away from the 
hot spot node, the mean service time at the channel, considering both regular and hot 
spot message with their appropriate weights, can be written as 

jj
T)(T)(T jrjcj θθ λλλλ +=  (8) 
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Finally, by averaging all possible values of 
rc  and θc  yields the overall average time 

to set up a path, c , is given by  

θθθ cc)1(c r +−=  (9) 

The average network latency seen by a hot spot message can be written as 
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We model the header behaviour as a Random Walk problem [3]. 
jc  which is the 

average time interval to reach the destination, satisfies the following equation  
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The average time to setup a path for an r-hop regular message and the time is needed 
to setup a reserved path for hot spot message that is j hops away (1≤ j≤ 2(k-1)) from 
the hot spot node are given by   

jcc,rcc 0j0r +=+= θ  (12) 

The probability of blocking, can therefore written as 
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Where 0
jpass  and 1

jpass  are the probability that a message has to visit one dimension 

and the probability that it still has to visit both dimensions, respectively. To determine 
the average time, W , that a message sees in the source node before entering into the 
network, the injection channel is treated as an M/G/1 queue with a mean time waiting 
of [2] 
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Where 2
Tσ is the variance of the service distribution. The average arrival rate on each 

virtual channel is λg/L and service time,T , with an approximated variance 
2)1d3MT( +−−  yields the mean waiting time as 
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The probability, 
jlP , that l virtual channels are busy at the physical channel that is j 

hops away from the hot spot node, can be determined as follows  
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And the average multiplexing rate through the network is 
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Fig. 1 shows the latency results predicted by the model against those provided by the 
simulator for Network size N = 8×8 torus, Message length is M=32 and 64 flits, 
number of virtual channels L= 6, and fractions of hot spot traffic is θ=0.05 and 0.2.  
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8-ary 2-cubes, L=6, θ=0.2

0

120

240

360

480

600

720

0 0.002 0.004 0.006 0.008 0.01

Traffic Generation Rate(messages/ cycle)

L
at

en
cy

(c
yc

le
s)

simulation
M=32
M=64

 

Fig. 1. Average message latency calculated by model vs. simulation 

3   Conclusions 

In this paper we proposed a new analytical model to compute the average message 
latency of PCS in two-dimensional torus in the presence of hot spot traffic. 
Simulation experiments have revealed that the results predicted by the model are in 
good agreement with those obtained through simulations under different working 
conditions.  
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