

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 144 – 152, 2005.
© IFIP International Federation for Information Processing 2005

TCP-ABC: From Multiple TCP Connections
to Atomic Broadcasting*

Zhiyuan Shao, Hai Jin, Wenbin Jiang, and Bin Cheng

Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, 430074, China

zyshao@mail.hust.edu.cn

Abstract. In this paper, we propose a novel scheme, named as TCP-ABC, which
replicates the server side TCP connections among multiple server nodes of a
cluster. By guaranteeing atomic request delivery, and consensus on responses,
this scheme provides the legacy server applications running on the server nodes
with multiple active backups in a transparent fashion. By failing the connections
over healthy units, the scheme enhances the service and data availability of the
cluster. By conducting experiments on the prototype system of a cluster up to
four nodes, we find TCP-ABC results in small performance lost while greatly
enhances the service and data availability.

1 Introduction

With the popularity of using clusters built with COTS components, more and more
efforts need to be done to enhance the availability of the cluster systems. For the con-
siderations of cost and portability, clusters always adopt mature legacy server applica-
tions, such as Apache, Q-Mail, to provide the services. Most of these applications
follow the client/server model, and use TCP to implement their communication mod-
ule. However, few of these applications provide active or standby backups to tolerate
the faults so as to enhance the availability of a cluster. Although achieving
fault-tolerance of the application by totally replacing its communication module sounds
feasible, it involves huge effort. The most ideal way to improve fault-tolerance of the
application and availability of the cluster is to employ solutions transparent to these
legacy applications.

Generally, the availability of a cluster system has two aspects: the service avail-
ability and the data availability. Nowadays, front-end solutions, such as LVS [13], are
used to achieve the service availability of a cluster, and a series of TCP fault-tolerance
schemes [2][7][9], are proposed to do it at finer granularity, i.e., TCP connections.
However, few legacy application transparent solutions are forwarded to enhance the
data availability for the share-nothing clusters.

Active and semi-active replications methods [12] provide strong data consistency
among the copies, which are the most ideal choices to implement the data availability
of the clusters. However, both classes of these schemes require support from the

* This paper is supported by National 863 Hi-Tech R&D Project under grant No.2002AA1Z2102.

 TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting 145

communication layer, i.e., atomic multicasting (broadcasting) [1][4]. In order to be
transparent to the legacy applications, converting the TCP connections at the server
side to atomic multicasting is the prerequisite of deploying these replication methods.

In this paper, we propose a novel scheme, namely TCP-ABC, which replicates the
server side TCP connections among multiple server nodes of a cluster. By guaranteeing
atomic request delivery, and consensus on responses, this scheme provides the legacy
server applications running on the server nodes with multiple active backups in a
transparent fashion. By failing the connections over healthy units, the scheme enhances
the service and data availability of the cluster.

We organize this paper as the followings. In section 2, the scenario of research is
presented. In section 3, we discuss the mechanisms employed by TCP-ABC during the
failure-free phase, and consider the possible failures in section 4. To evaluate this
scheme, we conduct experiments on real implementations, and present the results in
section 5. In section 6, we present a briefly survey of the related works and conclude the
paper in section 7.

2 Scenarios of Research

We take the share-nothing cluster shown in Fig. 1 as the scenario of our research.
Among the server nodes, there is a unique primary server and multiple backup servers.
The primary server possesses the Portal IP of the cluster. All the server nodes in the
cluster have their own IP addresses (IP1, IP2 …. IPn), which belong to a same private
subnet. The switch (or router), which connects the server nodes of the cluster with the
outside world, supports IP multicasting (which is widely supported by varieties of
network standards today) as well as point-to-point communication.

Primary Server Backup Server1 Backup Server2 Backup Server n

......

Client

Portal IP
IP1 IP2 IP3 IPn

Switch/ Router

Fig. 1. Scenarios of Research

Data on the server nodes can only be modified by the server side applications by
processing the requests of the clients. After processing each request, the server side
application sends a response back to the client to indicate the result of the operation
(Interactive Communication), and the requests and responses are sent via the estab-
lished TCP connections. In this paper, we only consider the TCP connections initiated
by the clients to the cluster. Regarding the server side applications, we consider only
those processing the incoming requests in a non-stop fashion, i.e., the request messages
are delivered in the order they are received.

146 Z. Shao et al.

For convenience of discussion, we assume the execution of the application is de-
terministic (Deterministic), and the server node delivers the received messages if it
does not fail (Self-delivery). We assume the network is always available and will not be
partitioned. Messages sent from one server node to another will eventually arrive at its
destination (Live Network). Moreover, we assume the failures are crashes (Failure
Stop) of the server nodes, and after failure, they will never come back. As our scheme
can adopt any independent failure detector, we assume the failure detector used in our
scheme is eventually perfect [5], i.e., it can diagnose the faults correctly.

3 Failure-Free Phase

Although the servers can obtain the incoming request messages at ease by simply
programming the switch [7], guaranteeing the atomicity of request delivery turns dif-
ficult. In TCP-ABC, incoming requests are sequenced at the primary server and then
propagated, while the responses from the server nodes converge at the primary server to
form a unique response. The communication paradigm of TCP-ABC is shown in Fig. 2,
where Pi (i =1~8) and Bj (j =1~9) are the processing steps at the primary and backup
respectively.

Primary
Server

Backup
Server

Incoming
Requests

IP Multicast Tunnel

Relayed packet

Message
Ordering(MO)

Response
Control(RC)

Outgoing
Response

Application

Response

Connection Management(CM)

Relayed packet

Application

Response

Connection Management(CM)

Message
Ordering(MO)

Response
Control(RC)

P2 P3

P4 P5

P6 P7

P8P1

P4 P5 B1

B2 B3

B4 B5

B6 B7

B8

Client

Fig. 2. Communication Paradigm of TCP-ABC

From Fig. 2 we can see that each server node of the cluster consists of Connection
Management (CM), Message Ordering (MO) and Response Control (RC) module.

When the primary server receives an incoming TCP request packet from one of the
clients, its CM module intercepts the packet and conducts legality check on the packet
according to the connections. After that, the packet is given a global ordering number
by MO module of the primary server, and then relayed to the backup servers. Section
3.1 will explain the ordering and delivery mechanisms in detail.

When responses are generated, they will be intercepted by the local CM modules
and further handled by RC modules to figure out to the ordering number of the in-
coming request packet the response is for (the response number). Then, the response
together with the response number will be sent to the primary server, which will decide
the final version. Section 3.2 will explain this procedure in detail.

 TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting 147

3.1 Message Ordering and Delivery Strategy

In TCP-ABC, each incoming TCP request packet from the clients is ordered by MO
module of the primary server. To explain the ordering method, we illustrate the mes-
sage exchange pattern of a typical TCP connection [10] in Fig. 3.

…

sy n

sy n & a c k
a c k

f in

a c k & fin

f in

C lie n t S e rv e r

re q ue s t

a c k & fin

re sp on se

re q ue s t

re sp on se

a c k

c 1

c 2

c 3

c 4

c 5

c 6

c 7

s1

s2

s3

s4

s5

a c k

s6

Fig. 3. The Message Exchange Pattern of a Typical TCP Connection

During the connection, MO module of the primary server gives the request packets
(c1, c2 … in Fig. 3) from the client the ordering numbers provided they are not the
retransmitted packets or pure ACKs. In TCP-ABC, the ordering number grows
monotonically and re-folds at a boundary, and fragments of the same request packet are
given the same ordering number.

Regarding the pure ACK request packets, such as c5 in Fig. 3, we give them a special
ordering number that does not fall in the range of ordinary ordering numbers. When
received by the server nodes, they are simply delivered if no request packets are
pending before them. MO module of primary server will have the FIN packets as c6 in
Fig. 3 ordered before dissemination. If a server node receives the final request packet,
i.e., c7 in Fig. 3, and makes sure that all other nodes have also received the packet, the
resources used by the corresponding connection will be reclaimed.

After being properly ordered, each incoming TCP request packet (except for the
pure ACK and c7) forms a decision message as <n, m, p>, where n denotes the ordering
number allocated by the primary, p denotes the request packet while m denotes the
connection number the packet belongs to. The backup servers in TCP-ABC receive the
decision messages by a monotonically increasing order. If decision message is received
in disrupted order, the backup server will stop message delivering and send NAK
messages to the primary server for retransmissions, which requires the primary to log
incoming requests. As communication is interactive, the size of buffer used for logging
on the primary should be the number of connections, and this buffer is replicated
among all the backup servers to tolerate faults.

In TCP-ABC, all the server nodes of the cluster only deliver the decisions by a
monotonically increasing order. Before delivering, the server nodes should make sure
the decision is stable, i.e., all the others have received the decision. TCP-ABC requires

148 Z. Shao et al.

all the backups to send a positive ACK message with the ordering number to other
nodes after having received a decision. Each node delivers the decision only after
having gathered all corresponding positive ACKs from the backups. As receiving ACK
message with higher ordering number from a backup, each backup employs a simple
time-out mechanism to retransmit the positive ACK message with the latest ordering
number to guarantee the reliable dissemination of its positive ACK messages.

Theorem 1. TCP-ABC guarantees the atomicity of message delivery for request
packets at the server nodes.

Proof. A multicast protocol is atomic if it satisfied three properties: Self-delivery,
All-or-nothing and Message ordering. Self-delivery is assumed in section 2. Since a
fixed sequencer (i.e., the primary) is used to order all incoming requests, which means
TCP-ABC satisfied FIFO ordering. In case a decision message is lost at some nodes,
the rest of the server nodes can delivery this decision only after the decision is received
by all the server nodes, as they cannot receive all the positive ACKs. If one of server
nodes crashes on the fly, the employed failure detector will eventually confirm the
failure, exclude the server node from the cluster, and awake the rest of the server nodes.
By this way, the all-or-nothing property is satisfied.

3.2 Response Control (Consensus)

In active replication schemes (e.g. [3]), with the deterministic assumption, server nodes
always send their responses directly back to the clients, and the client picks up the
fastest one. This method, however, does not fit TCP-ABC, as if it was employed, the
processing and communication speed will be decided by the fastest node, and the
slower nodes will lose pace. In TCP-ABC, a consensus on the responses at each turn of
the iterations of communication is required to synchronize the server nodes.

Response numbers are used to differentiate the iterations. TCP-ABC computes the
response number by comparing the ACK number of the response packet and the se-
quence number of the request packets in history. Response packets of the server nodes
together with their individual response numbers will converge at the primary, which
decide the final version of response for each response number by comparing the re-
sponse packets with the same response number. TCP-ABC drops the pure ACK re-
sponses of the backups, and sends only those of the primary back to the clients.

With this consensus stage, TCP-ABC actually implements a semi-active replication
mechanism to guarantee the data consistency of the replicas [12].

4 Failures

There are two typical types of failures in our scheme: failure of backup server and that
of the primary. Crash failure of one of the backups makes the cluster stop working
temporarily, since the rest healthy server nodes cannot receive the positive ACKs for
the decisions and the responses from the failed backup. System continues to work until
the failure detector diagnoses the failure, and after that, server nodes in the cluster will
not wait messages from it anymore.

 TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting 149

TCP-ABC handles the failure of primary by electing a new primary server among
the healthy backups. The one with highest ordering number will be chosen as the new
primary so as to keep the existing ordering number of the decisions. If more than one
backup satisfy this criteria, the one with the smallest private IP address wins the elec-
tion. Portal IP address of the cluster will be bound to the NIC of the new primary
(IP-takeover). The retransmission mechanism of TCP assures that the unacknowledged
requests of the clients will arrive at the new primary.

5 Performance Evaluation

To evaluate performance of TCP-ABC, we implement a prototype with a cluster up to
four server nodes. In section 5.1, we will discuss the penalty on communication. In
section 5.2, we will discuss the performance of MySQL cluster, which employs
TCP-ABC to achieve high availability. The server nodes of the cluster are PC servers
running Redhat Linux with kernel version 2.4.7-10, the hardware configuration is Intel
Pentium III 1GHz CPU, 512MB Memory and 100Mbps Intel EEPro NIC. The client
machines are PCs running Windows 2000 Professional (service pack 4) with hardware
of Intel Celeron 1.7GHz CPU, 512MB Memory and RTL8139A NIC. We use 3COM
100Mbps switch to connect the clients and the server nodes.

5.1 Communication Penalty

In Fig. 4, we compare the performance of TCP connections under different cluster
configurations. TCP-ABC is used when there is more than one server node. The round
trip time (RTT) between the client and the cluster is used to demonstrate the latency of
communication, and Netpipe-2.4 [11] is used as the benchmark.

0 150 300 450 600 750 900 1050 1200 1350 1500

0.5

1

1.5

2

2.5

PacketSize(Bytes)

R
T

T
(m

s)

Standard TCP
Two Nodes
Three Nodes
Four Nodes

Fig. 4. Communication Penalty of TCP-ABC

From Fig. 4, we can see that when there are two server nodes in the cluster, the la-
tency increases about 20~30% compared with that of the standard TCP. The latency
increase is due to message ordering operations on the primary and the time paid at
waiting for the positive ACKs and responses from the backup.

When the number of server nodes increases to four, the latency turns higher than that
of two. But from Fig. 4, we can observe that compared with that of two nodes, the la-

150 Z. Shao et al.

tency of four nodes only increases about near 10%. The increment is resulted for more
time spent on waiting for the positive ACKs and responses from the backup servers.

5.2 Performance of MySQL Cluster

As an open source database management system, MySQL server [8] has been gaining
more and more users around the world. In common installations, it is used as backend
server providing data to the other server nodes. However, the crash of MySQL server
will result in unavailability of the whole cluster. Build-in program of MySQL package
can provide the users with a standby backup, and the failover mechanism is not auto-
matic and seamless. We use TCP-ABC to provide multiple active replicas for MySQL
server. In our experiment, MySQL server 3.23.41 runs on the server nodes, and the
client machine connects to the cluster with MySQL ODBC 3.51.10.

A thread is invoked at the client to create and drop 1000 tables, each of which has ten
integer fields. A test table with ten integer fields is created for further experiments. We
invoke another thread to insert and delete 10000 rows into and out from the test table.
The performance of update is obtained by updating a random row within the test table
for 1000 times. For all these tests, average response time is obtained to indicate the
performance, shown in Fig. 5.

0

0.5

1

1.5

2

2.5

3

Create Table Drop Table Insert Row Delete Row Update Row

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Single Node

Two Nodes

Three Nodes

Four Nodes

Fig. 5. Performance of MySQL Cluster on Update Operations

Fig. 5 shows that creating of table is the most time consuming. This is because
MySQL server needs I/O operations when creating new files to hold newly created
tables. The other update operations cost less time since the file is always open before
operation. Larger sacrifice on the performance of the update operations consuming less
time than those consuming more can be observed. Since penalty put on communication
can be better masked by the time consumed on the operations. This means, to the
complex operations (e.g., updates on multi-table), the sacrifice is less than that of the
simple ones in the experiments.

6 Related Works

Atomic Multicast schemes [1][4] and View Synchronous Communication [6] are two
important communication abstractions that have been extensively considered in the

 TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting 151

context of asynchronous fault-tolerant distributed systems. However, besides the dis-
advantages for practical applications, such as heavy-weighted, prolonged delivery time
and complexity, both of these two abstractions take stateless communication protocols
(i.e. UDP) as their basis. This inevitably jeopardizes the transparency if they are applied
to the legacy applications using TCP.

TCP Fault-tolerance Schemes [2][7][9] were proposed within the past a few years.
Most of them were implemented by providing primary server that actually handled the
connection with an active fully replicated backup. However, these schemes suffered
some common drawbacks, such as long failover time [2], unreasonable assumption on
the processing speed of replicas [7], heavy load on the primary [9]. Moreover, these
schemes considered only the service availability.

7 Conclusions

In this paper, we propose a scheme to replicate the server side TCP connections among
multiple server nodes of a cluster so as to make failover at TCP connection granularity
possible. By guaranteeing atomic request delivery, and consensus on responses, a
semi-active replication mechanism is formed to guarantee the data consistency of the
server nodes. By conducting experiments on the prototype system of a cluster up to four
nodes, especially the MySQL cluster, we find our scheme results in small performance
lost while greatly enhances the service and data availability.

References

1. D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia, “The Totem multi-
ple-ring ordering and topology maintenance protocol”, ACM Transactions on Computer
Systems, May 1998, 16(2):93-132

2. L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorodnov, “Wrapping
Server-Side TCP to Mask Connection Failures”, In Proceedings of IEEE INFOCOM, An-
chorage, Alaska, USA, 2001, pp.329-337

3. Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser, “Robust and Efficient Replication
using Group Communication”, Technique Report CS94-20, Institute of Computer Science,
Hebrew University, 1994

4. K. Birman, A. Schiper, and P. Stephenson, “Lightweight Causal and Atomic Group Mul-
ticast”, ACM Transactions on Computer Systems, 1991. 9(3):272-314

5. T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems”,
Journal of the ACM, March 1996, 43(2):225-267

6. G. V. Chockler, I. Keidar, and R. Vitenberg, “Group Communication Specifications: A
Comprehensive Study”, ACM Computing Surveys, December 2001, 33(4):1-43

7. M. Marwah, S. Mishra, and C. Fetzer, “TCP Server Fault Tolerance Using Connection
Migration to a Backup Server”, In Proceedings of the 2003 IEEE International Conference
on Dependable Systems and Networks (DSN), San Francisco, CA, USA, 2003, pp.373-382

8. MySQL server, http://www.mysql.com
9. Z. Shao, H. Jin and B. Chen, J. Xu, and J. Yue, “HARTS: High Availability Cluster Ar-

chitecture with Redundant TCP Stacks”, In Proceedings of the International Performance
Computing and Communication Conference (IPCCC), Phoenix, Arizona, USA, 2003,
pp.255-262

152 Z. Shao et al.

10. W. R. Stevens, TCP/IP illustrated. Volume 1: The protocols, Addison-Wesley, 1994
11. Q. O. Snell, A. Mikler, and J. L. Gustafson, “Netpipe: A Network Protocol Independent

Performace Evaluator”, In Proceedings of IASTED International Conference on Intelligent
Information Management and Systems, June 1996, pp.196-204

12. M. Wiesmann, F. Pedone, A. Schiper, and B. Kemme, “Understanding replication in data-
bases and distributed systems”, In Proceedings of the 20th IEEE International Conference
on Distributed Computing Systems (ICDCS), Taipei, Taiwan, 2000, pp.264-274

13. W. Zhang, “Linux Virtual Server for Scalable Network Services”, In Proceedings of Ottawa
Linux Symposium, Ottawa, Canada, 2000, pp.212-221

	Introduction
	Scenarios of Research
	Failure-Free Phase
	Message Ordering and Delivery Strategy
	Response Control (Consensus)

	Failures
	Performance Evaluation
	Communication Penalty
	Performance of MySQL Cluster

	Related Works
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

