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Abstract. In this paper, we propose a novel scheme, named as TCP-ABC, which 
replicates the server side TCP connections among multiple server nodes of a 
cluster. By guaranteeing atomic request delivery, and consensus on responses, 
this scheme provides the legacy server applications running on the server nodes 
with multiple active backups in a transparent fashion. By failing the connections 
over healthy units, the scheme enhances the service and data availability of the 
cluster. By conducting experiments on the prototype system of a cluster up to 
four nodes, we find TCP-ABC results in small performance lost while greatly 
enhances the service and data availability. 

1   Introduction 

With the popularity of using clusters built with COTS components, more and more 
efforts need to be done to enhance the availability of the cluster systems. For the con-
siderations of cost and portability, clusters always adopt mature legacy server applica-
tions, such as Apache, Q-Mail, to provide the services. Most of these applications 
follow the client/server model, and use TCP to implement their communication mod-
ule. However, few of these applications provide active or standby backups to tolerate 
the faults so as to enhance the availability of a cluster. Although achieving 
fault-tolerance of the application by totally replacing its communication module sounds 
feasible, it involves huge effort. The most ideal way to improve fault-tolerance of the 
application and availability of the cluster is to employ solutions transparent to these 
legacy applications. 

Generally, the availability of a cluster system has two aspects: the service avail-
ability and the data availability. Nowadays, front-end solutions, such as LVS [13], are 
used to achieve the service availability of a cluster, and a series of TCP fault-tolerance 
schemes [2][7][9], are proposed to do it at finer granularity, i.e., TCP connections. 
However, few legacy application transparent solutions are forwarded to enhance the 
data availability for the share-nothing clusters. 

Active and semi-active replications methods [12] provide strong data consistency 
among the copies, which are the most ideal choices to implement the data availability 
of the clusters. However, both classes of these schemes require support from the 
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communication layer, i.e., atomic multicasting (broadcasting) [1][4]. In order to be 
transparent to the legacy applications, converting the TCP connections at the server 
side to atomic multicasting is the prerequisite of deploying these replication methods. 

In this paper, we propose a novel scheme, namely TCP-ABC, which replicates the 
server side TCP connections among multiple server nodes of a cluster. By guaranteeing 
atomic request delivery, and consensus on responses, this scheme provides the legacy 
server applications running on the server nodes with multiple active backups in a 
transparent fashion. By failing the connections over healthy units, the scheme enhances 
the service and data availability of the cluster. 

We organize this paper as the followings. In section 2, the scenario of research is 
presented. In section 3, we discuss the mechanisms employed by TCP-ABC during the 
failure-free phase, and consider the possible failures in section 4. To evaluate this 
scheme, we conduct experiments on real implementations, and present the results in 
section 5. In section 6, we present a briefly survey of the related works and conclude the 
paper in section 7. 

2   Scenarios of Research 

We take the share-nothing cluster shown in Fig. 1 as the scenario of our research. 
Among the server nodes, there is a unique primary server and multiple backup servers. 
The primary server possesses the Portal IP of the cluster. All the server nodes in the 
cluster have their own IP addresses (IP1, IP2 …. IPn), which belong to a same private 
subnet. The switch (or router), which connects the server nodes of the cluster with the 
outside world, supports IP multicasting (which is widely supported by varieties of 
network standards today) as well as point-to-point communication. 

Primary Server Backup Server1 Backup Server2 Backup Server n

......

Client

Portal IP
IP1 IP2 IP3 IPn

Switch/ Router

 

Fig. 1. Scenarios of Research 

Data on the server nodes can only be modified by the server side applications by 
processing the requests of the clients. After processing each request, the server side 
application sends a response back to the client to indicate the result of the operation 
(Interactive Communication), and the requests and responses are sent via the estab-
lished TCP connections. In this paper, we only consider the TCP connections initiated 
by the clients to the cluster. Regarding the server side applications, we consider only 
those processing the incoming requests in a non-stop fashion, i.e., the request messages 
are delivered in the order they are received. 



146 Z. Shao et al. 

 

For convenience of discussion, we assume the execution of the application is de-
terministic (Deterministic), and the server node delivers the received messages if it 
does not fail (Self-delivery). We assume the network is always available and will not be 
partitioned. Messages sent from one server node to another will eventually arrive at its 
destination (Live Network). Moreover, we assume the failures are crashes (Failure 
Stop) of the server nodes, and after failure, they will never come back. As our scheme 
can adopt any independent failure detector, we assume the failure detector used in our 
scheme is eventually perfect [5], i.e., it can diagnose the faults correctly. 

3   Failure-Free Phase 

Although the servers can obtain the incoming request messages at ease by simply 
programming the switch [7], guaranteeing the atomicity of request delivery turns dif-
ficult. In TCP-ABC, incoming requests are sequenced at the primary server and then 
propagated, while the responses from the server nodes converge at the primary server to 
form a unique response. The communication paradigm of TCP-ABC is shown in Fig. 2, 
where Pi (i =1~8) and Bj (j =1~9) are the processing steps at the primary and backup 
respectively. 
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Fig. 2. Communication Paradigm of TCP-ABC 

From Fig. 2 we can see that each server node of the cluster consists of Connection 
Management (CM), Message Ordering (MO) and Response Control (RC) module. 

When the primary server receives an incoming TCP request packet from one of the 
clients, its CM module intercepts the packet and conducts legality check on the packet 
according to the connections. After that, the packet is given a global ordering number 
by MO module of the primary server, and then relayed to the backup servers. Section 
3.1 will explain the ordering and delivery mechanisms in detail. 

When responses are generated, they will be intercepted by the local CM modules 
and further handled by RC modules to figure out to the ordering number of the in-
coming request packet the response is for (the response number). Then, the response 
together with the response number will be sent to the primary server, which will decide 
the final version. Section 3.2 will explain this procedure in detail. 
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3.1   Message Ordering and Delivery Strategy 

In TCP-ABC, each incoming TCP request packet from the clients is ordered by MO 
module of the primary server. To explain the ordering method, we illustrate the mes-
sage exchange pattern of a typical TCP connection [10] in Fig. 3. 
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Fig. 3. The Message Exchange Pattern of a Typical TCP Connection 

During the connection, MO module of the primary server gives the request packets 
(c1, c2 … in Fig. 3) from the client the ordering numbers provided they are not the 
retransmitted packets or pure ACKs. In TCP-ABC, the ordering number grows 
monotonically and re-folds at a boundary, and fragments of the same request packet are 
given the same ordering number. 

Regarding the pure ACK request packets, such as c5 in Fig. 3, we give them a special 
ordering number that does not fall in the range of ordinary ordering numbers. When 
received by the server nodes, they are simply delivered if no request packets are 
pending before them. MO module of primary server will have the FIN packets as c6 in 
Fig. 3 ordered before dissemination. If a server node receives the final request packet, 
i.e., c7 in Fig. 3, and makes sure that all other nodes have also received the packet, the 
resources used by the corresponding connection will be reclaimed. 

After being properly ordered, each incoming TCP request packet (except for the 
pure ACK and c7) forms a decision message as <n, m, p>, where n denotes the ordering 
number allocated by the primary, p denotes the request packet while m denotes the 
connection number the packet belongs to. The backup servers in TCP-ABC receive the 
decision messages by a monotonically increasing order. If decision message is received 
in disrupted order, the backup server will stop message delivering and send NAK 
messages to the primary server for retransmissions, which requires the primary to log 
incoming requests. As communication is interactive, the size of buffer used for logging 
on the primary should be the number of connections, and this buffer is replicated 
among all the backup servers to tolerate faults. 

In TCP-ABC, all the server nodes of the cluster only deliver the decisions by a 
monotonically increasing order. Before delivering, the server nodes should make sure 
the decision is stable, i.e., all the others have received the decision. TCP-ABC requires 
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all the backups to send a positive ACK message with the ordering number to other 
nodes after having received a decision. Each node delivers the decision only after 
having gathered all corresponding positive ACKs from the backups. As receiving ACK 
message with higher ordering number from a backup, each backup employs a simple 
time-out mechanism to retransmit the positive ACK message with the latest ordering 
number to guarantee the reliable dissemination of its positive ACK messages. 

Theorem 1. TCP-ABC guarantees the atomicity of message delivery for request 
packets at the server nodes. 

Proof. A multicast protocol is atomic if it satisfied three properties: Self-delivery, 
All-or-nothing and Message ordering. Self-delivery is assumed in section 2. Since a 
fixed sequencer (i.e., the primary) is used to order all incoming requests, which means 
TCP-ABC satisfied FIFO ordering. In case a decision message is lost at some nodes, 
the rest of the server nodes can delivery this decision only after the decision is received 
by all the server nodes, as they cannot receive all the positive ACKs. If one of server 
nodes crashes on the fly, the employed failure detector will eventually confirm the 
failure, exclude the server node from the cluster, and awake the rest of the server nodes. 
By this way, the all-or-nothing property is satisfied. 

3.2   Response Control (Consensus) 

In active replication schemes (e.g. [3]), with the deterministic assumption, server nodes 
always send their responses directly back to the clients, and the client picks up the 
fastest one. This method, however, does not fit TCP-ABC, as if it was employed, the 
processing and communication speed will be decided by the fastest node, and the 
slower nodes will lose pace. In TCP-ABC, a consensus on the responses at each turn of 
the iterations of communication is required to synchronize the server nodes. 

Response numbers are used to differentiate the iterations. TCP-ABC computes the 
response number by comparing the ACK number of the response packet and the se-
quence number of the request packets in history. Response packets of the server nodes 
together with their individual response numbers will converge at the primary, which 
decide the final version of response for each response number by comparing the re-
sponse packets with the same response number. TCP-ABC drops the pure ACK re-
sponses of the backups, and sends only those of the primary back to the clients. 

With this consensus stage, TCP-ABC actually implements a semi-active replication 
mechanism to guarantee the data consistency of the replicas [12]. 

4   Failures 

There are two typical types of failures in our scheme: failure of backup server and that 
of the primary. Crash failure of one of the backups makes the cluster stop working 
temporarily, since the rest healthy server nodes cannot receive the positive ACKs for 
the decisions and the responses from the failed backup. System continues to work until 
the failure detector diagnoses the failure, and after that, server nodes in the cluster will 
not wait messages from it anymore. 
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TCP-ABC handles the failure of primary by electing a new primary server among 
the healthy backups. The one with highest ordering number will be chosen as the new 
primary so as to keep the existing ordering number of the decisions. If more than one 
backup satisfy this criteria, the one with the smallest private IP address wins the elec-
tion. Portal IP address of the cluster will be bound to the NIC of the new primary 
(IP-takeover). The retransmission mechanism of TCP assures that the unacknowledged 
requests of the clients will arrive at the new primary. 

5   Performance Evaluation 

To evaluate performance of TCP-ABC, we implement a prototype with a cluster up to 
four server nodes. In section 5.1, we will discuss the penalty on communication. In 
section 5.2, we will discuss the performance of MySQL cluster, which employs 
TCP-ABC to achieve high availability. The server nodes of the cluster are PC servers 
running Redhat Linux with kernel version 2.4.7-10, the hardware configuration is Intel 
Pentium III 1GHz CPU, 512MB Memory and 100Mbps Intel EEPro NIC. The client 
machines are PCs running Windows 2000 Professional (service pack 4) with hardware 
of Intel Celeron 1.7GHz CPU, 512MB Memory and RTL8139A NIC. We use 3COM 
100Mbps switch to connect the clients and the server nodes. 

5.1   Communication Penalty 

In Fig. 4, we compare the performance of TCP connections under different cluster 
configurations. TCP-ABC is used when there is more than one server node. The round 
trip time (RTT) between the client and the cluster is used to demonstrate the latency of 
communication, and Netpipe-2.4 [11] is used as the benchmark. 
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Fig. 4. Communication Penalty of TCP-ABC 

From Fig. 4, we can see that when there are two server nodes in the cluster, the la-
tency increases about 20~30% compared with that of the standard TCP. The latency 
increase is due to message ordering operations on the primary and the time paid at 
waiting for the positive ACKs and responses from the backup. 

When the number of server nodes increases to four, the latency turns higher than that 
of two. But from Fig. 4, we can observe that compared with that of two nodes, the la-
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tency of four nodes only increases about near 10%. The increment is resulted for more 
time spent on waiting for the positive ACKs and responses from the backup servers. 

5.2   Performance of MySQL Cluster 

As an open source database management system, MySQL server [8] has been gaining 
more and more users around the world. In common installations, it is used as backend 
server providing data to the other server nodes. However, the crash of MySQL server 
will result in unavailability of the whole cluster. Build-in program of MySQL package 
can provide the users with a standby backup, and the failover mechanism is not auto-
matic and seamless. We use TCP-ABC to provide multiple active replicas for MySQL 
server. In our experiment, MySQL server 3.23.41 runs on the server nodes, and the 
client machine connects to the cluster with MySQL ODBC 3.51.10. 

A thread is invoked at the client to create and drop 1000 tables, each of which has ten 
integer fields. A test table with ten integer fields is created for further experiments. We 
invoke another thread to insert and delete 10000 rows into and out from the test table. 
The performance of update is obtained by updating a random row within the test table 
for 1000 times. For all these tests, average response time is obtained to indicate the 
performance, shown in Fig. 5. 
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Fig. 5. Performance of MySQL Cluster on Update Operations 

Fig. 5 shows that creating of table is the most time consuming. This is because 
MySQL server needs I/O operations when creating new files to hold newly created 
tables. The other update operations cost less time since the file is always open before 
operation. Larger sacrifice on the performance of the update operations consuming less 
time than those consuming more can be observed. Since penalty put on communication 
can be better masked by the time consumed on the operations. This means, to the 
complex operations (e.g., updates on multi-table), the sacrifice is less than that of the 
simple ones in the experiments. 

6   Related Works 

Atomic Multicast schemes [1][4] and View Synchronous Communication [6] are two 
important communication abstractions that have been extensively considered in the 
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context of asynchronous fault-tolerant distributed systems. However, besides the dis-
advantages for practical applications, such as heavy-weighted, prolonged delivery time 
and complexity, both of these two abstractions take stateless communication protocols 
(i.e. UDP) as their basis. This inevitably jeopardizes the transparency if they are applied 
to the legacy applications using TCP. 

TCP Fault-tolerance Schemes [2][7][9] were proposed within the past a few years. 
Most of them were implemented by providing primary server that actually handled the 
connection with an active fully replicated backup. However, these schemes suffered 
some common drawbacks, such as long failover time [2], unreasonable assumption on 
the processing speed of replicas [7], heavy load on the primary [9]. Moreover, these 
schemes considered only the service availability. 

7   Conclusions 

In this paper, we propose a scheme to replicate the server side TCP connections among 
multiple server nodes of a cluster so as to make failover at TCP connection granularity 
possible. By guaranteeing atomic request delivery, and consensus on responses, a 
semi-active replication mechanism is formed to guarantee the data consistency of the 
server nodes. By conducting experiments on the prototype system of a cluster up to four 
nodes, especially the MySQL cluster, we find our scheme results in small performance 
lost while greatly enhances the service and data availability. 
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