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Abstract. We present a method for rapid development of benchmarks for Se-
mantic Web knowledge base systems. At the core, we have a synthetic data 
generation approach for OWL that is scalable and models the real world data. 
The data-generation algorithm learns from real domain documents and gener-
ates benchmark data based on the extracted properties relevant for benchmark-
ing. We believe that this is important because relative performance of systems 
will vary depending on the structure of the ontology and data used. However, 
due to the novelty of the Semantic Web, we rarely have sufficient data for 
benchmarking. Our approach helps overcome the problem of having insuffi-
cient real world data for benchmarking and allows us to develop benchmarks 
for a variety of domains and applications in a very time efficient manner. Based 
on our method, we have created a new Lehigh BibTeX Benchmark and con-
ducted an experiment on four Semantic Web knowledge base systems. We have 
verified our hypothesis about the need for representative data by comparing the 
experimental result to that of our previous Lehigh University Benchmark. The 
difference in both experiments has demonstrated the influence of ontology and 
data on the capability and performance of the systems and thus the need of us-
ing a representative benchmark for the intended application of the systems. 

1   Introduction 

As the Semantic Web catches on we should expect to see a large growth of Web data 
that has formal semantics and an increasing number of systems that process them. 
Now that OWL is a W3C recommendation it is quite foreseeable that a fair share of 
those data will be marked up in OWL and we will have a variety of tools that will 
process these knowledge bases (KB). We should also see a lot of companies attempt-
ing to adapt the technology but finding it very difficult to choose the right tool.  
Historically this has been the case for various “killer” technologies like databases and 
object oriented systems. Companies have invested millions of dollar in technologies 
that eventually had to be discarded [3]. It would be prudent for us in the Semantic 
Web community to have tools and techniques ready for evaluating these emergent 
systems, so we are not caught off guard and benefit from a proactive strategy. It is 
therefore critical that we explore various approaches for evaluating these KB process-
ing tools in an objective and practical manner.  

Benchmarking has been a powerful tool for evaluation and comparison of com-
puter systems. However, benchmarking of Semantic Web KB systems is challenging 
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due to a) the wide variety of types and sizes of KBs b) the difference in reasoning 
tasks involved and c) the breadth of the application domains. First, if the data is large, 
scalability and efficiency become crucial issues. Second, the system must provide suf-
ficient reasoning capabilities to support the semantic requirements of the application. 
However, increased reasoning capability usually means an increase in query response 
time as well. An important question is how well existing systems support these con-
flicting requirements. Finally, different domains and their associated applications may 
place emphasis on different requirements. As such, any data that is used in the 
benchmark has to be a good representative of the domain. 

In our previous work [12, 13] we have considered the first two issues. This resulted 
in the Lehigh University Benchmark (LUBM). LUBM is intended to evaluate the per-
formance of OWL repositories with respect to extensional queries over a large dataset 
that commits to a single realistic ontology. It consists of the ontology, customizable 
synthetic data, a set of test queries, and several performance metrics. The main fea-
tures of the benchmark include simulated data for the university domain, and a re-
peatable data set that can be scaled to an arbitrary size. 

In this paper we address the third issue of benchmarking Semantic Web KB sys-
tems with respect to a given domain. The synthetic data generator for LUBM was 
bound to a particular ontology and the data was generated by rules specified a priori 
based on subject matter expert’s knowledge of the domain. To extend the benchmark 
over different domains, we have to be capable of generating synthetic data of different 
ontologies due to insufficient quantities of real data at the current stage of the Seman-
tic Web development. We present a probabilistic model that, given representative data 
of some domain, can capture the properties of the data and generate synthetic data that 
has similar properties. To the best of our knowledge, this is the first work to model 
Semantic Web knowledge bases. 

In our previous LUBM experiment [13] we have evaluated four KB systems for the 
Semantic Web from several different aspects. We evaluated two memory-based sys-
tems (memory-based Sesame and OWLJessKB) and two systems with persistent stor-
age (database-based Sesame and DLDB-OWL). 

To evaluate our new approach, we have created the Lehigh BibTeX Benchmark 
(LBBM) and used this benchmark to evaluate the same systems. We are interested not 
only in testing the systems against the new benchmark but also in seeing the potential 
difference in the performances of the systems between the two benchmarks. 

Finally, to evaluate the performance of the LBBM, we collected a fair amount of 
OWL data, randomly selected a subset from the data, and used the subset as the train-
ing file for the data-generator. The synthetic data, the original data, and two other sets 
of data (one generated completely randomly by only looking into the ontology and 
one generated based on the authors’ knowledge about what the data is like) are com-
pared by using them to benchmark the memory-based Sesame system. The results 
showed that although the synthetic data still performs differently from the original 
data in some queries, the synthetic data always outperforms the completely random 
dataset.  

We believe our approach to data generation for OWL KB system benchmarks has 
three distinct advantages over a more static data generation approach. First, it reduces 
the benchmark development time drastically. Second, it allows the same systems to be 
tested against KBs that commit to different ontologies, because data sets for new  
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ontologies can be quickly generated. A third advantage is more representative bench-
mark data, because it is statistically based on actual data, as opposed to the devel-
oper’s knowledge of the domain. We presented a comparison between benchmarks of 
synthetic data and the real data and showed that the performances are very similar. 

In Section 2 of the paper we describe the new data generation approach in detail 
and discuss its validity. In Section 3 we describe the LBBM experiment and compare 
it to the LUBM. In Section 4 we present the experiment that evaluates our new data 
generation technique. In Section 5 we talk about related work and in Section 6 we 
conclude. 

2   Using a Learned Probabilistic Model to Generate Data 

The main idea behind our approach is to extract properties relevant for benchmarking 
from real world data, and then use them to guide the generation of the synthetic data. 
In this section we first define terminologies and notations that are used in formalizing 
the problem, then describe the property-learning algorithm. Following that we de-
scribe a Monte Carlo algorithm that utilizes the discovered properties to generate syn-
thetic data.  

2.1   Pattern-Extraction Problem 

The property-discovering process is motivated by the desire to solve the problem of 
not having enough real-world data for benchmarking a semantic web KB system. In a 
real-world OWL dataset, there are governing rules behind the generation of the data 
that are not observable from the ontology itself. Some parts of the ontology may be 
used more frequently than others. Take the BibTeX data for example, while assertions 
like each journal paper must have at least one author can be defined in the ontology, 
the probability that a paper has three authors cannot be obtained by simply looking at 
the ontology. We wanted to discover these properties, and use them to synthetically 
generate data that is a legitimate substitute for the real data. This is especially critical 
since we still do not have enough real OWL data on the Web, but at the same time we 
need sufficient and credible data to develop effective benchmarks. 

Given representative actual data of some domain, the probabilistic modeling of the 
data can capture the features important for benchmarking in the data. We tried only to 
capture the statistical features of the data concerning the classes and properties. The 
actual content, or values, of the triples are filled with strings with similar length to 
that of the original file. Such simplification largely reduces the complexity of the tool, 
while preserving the performance of the benchmark using the synthetic data.  

We assume that each individual only belongs to one most specific class. Although 
this is not always true, this assumption is valid for a reasonably large portion of exist-
ing Semantic Web data. In our model, an individual has a probability of being a 
member of a particular class, while a member of a particular class has a probability of 
a particular cardinality for each property. This model differs from the LUBM in that 
the LUBM assumes a minimum/maximum cardinality and an uniform distribution of 
cardinalities, while this new model can be used to simulate more complex real world 
distributions, thus giving the benchmark more power in dealing with different forms 
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of ontologies/data. We will first introduce the terminology used in the model, then 
present an algorithm that can extract features from the data. 

We first define the predicate type(x,y) to indicate if an individual x is an instance of 
the class y. Let an RDF triple Tp be represented as Tp=(s,p,o), where s, p, o are the 
subject, predicate, and object, respectively. An individual Ind(SID) is then the set of 
RDF triples Ind(SID) = {Tp1, Tp2, …, Tpn} such that for each triple Tpi of the form Tpi 
=(si,pi,oi), si=SID. 

We next define the property pattern, which plays a key role in mining patterns in 
the training data. Let C be the set of classes, P be the set of properties that are defined 
in the ontology and G be [ RDF literals ∪ XML Schema datatypes∪ C ]. A property 
pattern Prop is a 4-tuple Prop =(c, p, g, δProp) where: 1) c ∈ C, 2) p ∈ P, 3) g ∈ G, 
and 4)δProp: a probability distribution function. Also, an RDF triple Tp is said to 
match some property pattern Prop, match(Tp, Prop), iff 
type(si,c)∧ (pi = p)∧ type(oi,g). The probability δProp distribution is then defined as 

δPr op(n) = P( I(match(Tp,Prop)) =
Tp∈Ind (sID )

∑ n |  type(sID ,c),Ind(sID ) ∈ KB) (1) 

where I is an indicator function1, and KB denotes the pool of individuals in the train-
ing file. δProp(n) is then the probability that there are n triples in some individual 
Ind(SID) in the training file KB that matches Prop. δProp (n) is then describing how 
likely for an individual Ind(SID) to have n triples that matches the property pattern 
Prop. 

A property pattern set for a class c, ppSet(c), is the set of property patterns 
ppSet(c) = {Prop1, Prop2, …, Propm},  such that miicci ,...,1, , =∀= . The property 

pattern set denotes all the property patterns we discovered for the individuals of the 
class c, thus is the basis for generating data about class c. When generating an indi-
vidual, the property pattern set determines the kind of contents/triples the individual 
should have. 

The synthetic data generation is divided into two phases, the property-discovering 
phase, and the data generation phase. We now describe the procedure of discovering 
properties in the training data. The knowledge of the algorithm about the training file 
is denoted as Γ, a collection of property pattern sets. The algorithm goes through the 
training data only once. Initially the algorithm has no knowledge about the training 
file, Γ = ∅. As it goes through the data on the basis of individuals, it will either 1) 
create new property pattern set of the class c based on the information/individuals en-
countered so far, if there is no property pattern set of the class c in its knowledge, or 
2) update its current knowledge. Then the collected information determines the fol-
lowing parameters: 1) h, the number of property pattern sets, 2) Γ = {ppSet(c1), 
ppSet(c2), …, ppSet(ch)} such that ci ≠ c j,i ≠ j , 3) a set of values },...,,{ 21 hτττ  , 

where. τ kk=1

j∑ =1. τ k  is defined to be the proportion of individuals of the class ck. The 

algorithm is shown in Fig 1. 
As the algorithm goes through the data, it will continuously update its knowledge 

about the data, where the knowledge in the form of property pattern sets for different 

                                                           
1 The indicator function has value 1 if the event is true, and zero otherwise. 
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classes, Γ, and the corresponding Count_τ(k), the number of individuals of class ck in 
KB. τ k  is then obtained by normalizing Count_τ(k) at the end of the algorithm. In 

practice, we define an additional function, Count_δProp(n), which can be viewed as a 
histogram, with x-axis being n, and y axis being the number of individuals of the class 
c that matches Prop. δProp(n) is obtained by performing normalization on 
Count_δProp(n) after all data has been processed.  

 
 Initial Condition: Γ = ∅ (h=0)  
 For all individuals Ind(SIDi), i =1, 2, …, u, with triples Tp j = (sij , pij ,oij ) ∈  Ind(SIDi) 

If there are triples in the individual that match property patterns in current knowledge, 
 if ∃Prop=(ck,p,g, δProp) s.t. match(Tpj, Prop): 

Update Prop: check n, the number of triples in current individual Ind(SIDi) 
that matches Prop, then increase the value of Count_δProp (n) by one. 

Else 
Initialize Prop: generate a new instance of property pattern Prop=(ck, p, g, δProp) 
s.t. type(sij,ck )∧  type(oij,g), with Count_δProp (n) =1 where n is the number of triples 

in current individual Ind(SIDi) that matches Prop, zero elsewhere. 
If there is property pattern set of the class ck in current knowledge, ∃ppSet(ck) s.t. 
type(sij ,ck ) : 

ppSet(ck) ← ppSet(ck) ∪ Prop 
Else 

h ← h+1, Γ ← Γ∪ {ppSet(ck)} where ppSet(ck) = {prop} 
Count_τ(k) ← Count_τ(k)+1 

 
 Normalize:  
 For all property patterns: δPr op (i) = Count _δPr op (i) Count _δPr op ( j)

j= 0

∞∑ ,i =1,...,∞ 

 For all i=1,…,h: τ i = Count _ τ(i) Count _ τ ( j)
j=1

h∑  

Fig. 1. Algorithm Extract for extracting property patterns from training file 

2.2   The Monte Carlo Data Generation Algorithm 

The algorithm presented in this section is capable of generating synthetic data that has 
a structure similar to that of the training data. Inherited from the nature of Monte 
Carlo methods [20], this is a scalable algorithm that can generate files of arbitrary 
sizes that have similar properties to that of the training data. The algorithm will ini-
tialize the “framework” of the synthetic data first, that is, it first generates a set of in-
dividuals and assigns a class to each, then the algorithm goes on to generate the prop-
erties and corresponding vales to each individual. Define Rand(χ) to be a random 
number generator with seed χ that generates random number between [0, 1]. Let the 
function F(x) be the cumulative distribution function of δ: 

F(x) = δ(i)
i= 0

x∑  (2) 
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Note that in practice, the range of i such that δ(i) > 0  is finite, that is, δ(i) = 0 

∀i > ε , where ε is some threshold. Let Π = { hπππ ,...,, 21 } be the set of generated 

individuals, where π i is the set of individuals generated according to the distribution 
of the property pattern set ppSet(ci). 

 

Initial conditions: Π = ∅ , i = 1,…,h. 
 
Given the total number of desired individuals λ in the document to be generated, initialize 
the set of individuals according to the desired number of individuals. These individuals 
only have id and classes assigned, without detail of properties and values assigned yet.  
 

For all individuals  
    For all the property patterns Propij(ci, pij, gij) of the class ci 
  Find y such that Rand(χ ij ) = Fij (y)  

Generate y RDF triples according to Propij , if gij∈ C, then randomly select y 
members from π k

, type( π k ,gij), as the objects. Otherwise generate the objects 

such that they are random values of type gij. 

Fig. 2. Algorithm Generate for generating synthetic data 

Note that we skip the details of generating the values of the properties. For bench-
marking purposes, the content itself is less important as long as the generated content 
has similar “features” to the training data. The feature can refer to the length of the 
string, the range of the integer value, etc.  

2.3   Probabilistic Model Versus the Power Law 

Since we are trying to generate data that resembles the real world data, a key question 
is how representative our synthesized data is. The first claim of our tool is its scalabil-
ity. One may argue that real-world data should be self-similar, that is, some complex 
patterns emerge when the size of the data increases. We argue the legitimacy of the 
scalability in the fundamental inapplicability of the power law on our approach. 

The power-law specifies a relationship between two variables such that one is pro-
portion to the power of the other [11]. This law has been shown to hold in many dif-
ferent kinds of network. Take the World-Wide-Web for example, the number of links 
to a certain node can be predicted by the rank2 of the node. However, in a structural 
dataset like OWL, the distribution of the links is often constrained by the type of link 
it is. Take the Bibtex domain for example, although the out- link of the ObjectProp-
erty “editor” of a certain publication may vary over a wide range, most of them have 
1-3 editors. If the power-law applies, then as the size of the file increases, the maxi-
mum number of editors will also increase, without limit, which is clearly not true. No 
matter how big the file size is, the maximum number of authors is unlikely to exceed 
5 people. Still, there could be links where the power law is valid. In the FOAF  

                                                           
2 The index in the order of decreasing measurements (in-degree, out-degree, etc.). 
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domain, the number of acquaintances one has, as the community of FOAF increases, 
could also increase without boundary. In such cases, the data generation is scalable to 
the size of the real world data as long as the training file is a representative subset of 
the real world data. When we say representative subset, we mean when the sample is 
being drawn, we collect all the information about the sample, that is, when an indi-
vidual is being collected to the subset, all the links it has are also taken into the subset.  

3   LBBM: A New Benchmark 

The data generation method described in previous section allows us to rapidly de-
velop a benchmark that is specific to a domain and then conduct experiments based 
on it. We highlight the workflow in the following. First we choose an ontology that 
represents the domain in question. Then we collect sample data and create synthetic 
test data that commits to that ontology by utilizing the new data generation approach. 
We use this approach to generate a new benchmark for the Bibtex domain. At the end 
we compare the LBBM to our previous approach, the LUBM. 

3.1   Lehigh Bibtex Benchmark (LBBM) 

To test drive our approach, we have used it to create a new benchmark named Lehigh 
BibTeX Benchmark (LBBM). We have used the Lehigh University BibTeX ontology 
as our domain definition [18]. This ontology is a modified version of the Bibtex on-
tology 0.1 by MIT [4]. It is important to note our rationale behind choosing this par-
ticular ontology. Tempich and Volz [23] have done some preliminary work towards a 
benchmark for Semantic Web reasoners. Though their benchmark is still under  
construction, they analyze the publicly available ontologies and report them to be 
clustered into three categories: description logic-style, database schema-like, and ter-
minological ontologies.  

The BibTeX ontology is expressed in OWL Lite and consists of 28 classes and 80 
properties, half of which are datatype properties.  According to the classification of 
[23], the ontology is more of a database schema-like ontology. The classes and prop-
erties in the BibTeX ontology used by LBBM correspond to entries and fields in Bib-
TeX respectively.  

We designed test queries as realistic as possible against the benchmark data.  
Moreover, we choose the queries that cover a range of types in terms of input size, se-
lectivity, complexity, required hierarchy information, and required OWL inference. 
We designed twelve test queries in LBBM. A complete list of the queries can be 
found in [24]. Because of the nature of the ontology and the data, most of queries are 
RDF style queries and only one of them assumes OWL inference. 

In order to acquire a suitable set of training data, we take advantage of the fact that 
there are plenty of BibTeX files on the Web, and convert them into OWL format by 
the Java BibTeX to RDF Converter 1.0 developed by the University of Karlsruhe [15] 
and the perl DAML+OIL conversion script by BBN. This resulted in a 2.4 MB OWL 
file which was used as our training data. We then used our tool to identify patterns 
from the training data and generate synthetic benchmark data based on those patterns. 
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In order to test a system in the benchmark framework, we wrap the system with an 
instantiation of the predefined interface between the benchmark test module and the 
target system. This involves the implementation of Java APIs for operations such as 
loading and query execution.  

Query response time is collected in the way based on the process used in database 
benchmarks [5, 6, 9, 22]. To account for caching, each query is executed for ten times 
consecutively and the average time is computed. The elapsed time is counted from 
when the query is issued till the result set is returned and traversed from the beginning 
to the end. We also measure query completeness and soundness. We do not measure 
them with a coarse distinction of yes or no. Instead, we measure the degree of com-
pleteness as the percentage of the entailed answers that are returned by the system, 
and the degree of soundness as the percentage of the answers returned by the system 
that are actually entailed [13]. 

3.2   An Experiment Using LBBM 

We have conducted an experiment based on LBBM. Although newer systems with 
improved performance had been introduced, for the sake of comparison, we have 
evaluated the same systems as in our previous LUBM experiment, including DLDB-
OWL (04-03-29 release), Sesame (both main memory-based and database-based, 
v1.0), and OWLJessKB (04-02-23 release). First we briefly introduce the reasoning 
features of these systems. 

DLDB-OWL [21] loosely couples a relational database system (MS Access) with a 
description logic reasoning reasoner (FaCT). Sesame [7] is a storing and querying fa-
cility for RDF and RDF Schema (RDFS). Sesame is an incomplete reasoner for OWL 
Lite. We evaluate two implementations of Sesame, i.e., main memory-based and da-
tabase-based. For brevity, we hereinafter refer to them as Sesame-DB and Sesame-
Memory respectively. OWLJessKB [17] is a memory-based reasoning tool for OWL 
implemented as a set of JESS production rules.  

We have tested the above systems against four datasets, the largest one consisting 
of 320 OWL files totaling 189MB and containing over 2,600,000 triples. The test 
queries are expressed in RQL [16], a KIF-like language and JESS and issued to Ses-
ame, DLDB-OWL and OWLJessKB respectively. The experiment is conducted on a 
PC with following environment 1) 1.80GHz Pentium 4 CPU, 2) 256MB of RAM, 3) 
80GB of hard disk, 4) Windows XP Professional OS, and 5) Java SDK 1.4.1, 512MB 
of max heap size. 

 

Fig. 3. Load Time 
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Table 1 shows the load time of each system and the consequent repository sizes of 
DLDB-OWL and Sesame-DB. Fig. 3 depicts how the load time grows as the data size 
increases. It needs to be mentioned that OWLJessKB has failed to load the smallest 
dataset even after we increased the max heap size to 1GB. Consequently we will not 
include OWLJessKB in the subsequent discussion except for query completeness and 
soundness.  

Impressively, Sesame-Memory could load all of the datasets, despite that it nearly 
reached the memory limitations when loading the largest dataset. Furthermore, it is 
the fastest system to load every dataset. As for the two systems with secondary stor-
age, DLDB-OWL could obviously scale better than Sesame-DB. We will return to 
this in next section. 

Fig. 4 compares the selected query response time between DLDB-OWL and Ses-
ame systems. A complete set of results can be found at [24]. Sesame-Memory per-
formed the best in querying too. It was the fastest system in answering the queries 
upon the four of the datasets, with a few exceptions at the largest dataset when its per-
formance went down drastically (e.g. Queries 4, 10, and 12). We believe this was 
caused by frequent page swapping due to main memory limitations. For the other two 
systems, Sesame-DB was faster than DLDB-OWL to answer almost all the queries. 
Furthermore, for most of the queries, Sesame-DB has showed no proportional in-
crease in the response time as the data size grows. 

Table 1. Load time and repository sizes 

 

Next we look at the query completeness and soundness of each system. In order to 
get a flavor of its capability in this aspect, we have tested OWLJessKB on a single file 
extracted from the test dataset. It turned out that all the systems were sound in an-
swering the twelve queries. However, they differed from each other in query com-
pleteness.  

Specifically, all of them could answer Query 1 through Query 9 as well as Query 12 
completely. However, while Sesame and OWLJessKB were complete, DLDB-OWL 
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could only find partial answers (about 98%) for Query11 since  it does not make infer-
ences about the domain of properties. Moreover, as expected, OWLJessKB was the only 
system that could answer Query10, which requires owl:inverseOf inference. 

 

 

Fig. 4. Comparison between different systems for selected queries  

3.3   Comparison to the LUBM Experiment 

As noted, the same systems have previously been evaluated with our other bench-
mark: LUBM. The scales of the datasets used herein are also close to the first four 
datasets in the LUBM experiment respectively. The major difference between the two 
benchmarks lies in the ontology, the data model, and the test queries. We are inter-
ested to see how these have influenced the performance of each system.  

In terms of loading, DLDB-OWL was the system showing the best scalability in 
both experiments. Large scales of data remain a big challenge for OWLJessKB. It 
could load only the smallest dataset in the LUBM experiment after spending much 
longer time than the others. In this experiment, it was still slow in loading and could 
not even handle the smallest dataset. 

In contrast, Sesame systems have performed quite better in this experiment. Ses-
ame-Memory succeeded to load a considerably larger size of data. Sesame-DB still 
faces the scalability problem, but it is much less prominent than in the LUBM ex-
periment. We have considered Sesame’s inability to scale in loading to relate to two 
reasons. One is its use of forward-chaining inference and the overhead of recording 
the dependency among statements. The other reason is the time cost of ID manage-
ment for resources and literals during loading. (Readers are referred to [13] for a  
detailed discussion.). Compared to LUBM, LBBM’s ontology and data are more sim-
plistic and as a result, there are less inferred statements by Sesame during loading. In 
addition, there are fewer unique literals in the data. We think these could account for 
the significant scalability improvement of Sesame. 

It turned out that the difference between both benchmarks have also influenced the 
query performance, especially for Sesame. In the LUBM experiment, Sesame-DB was 
very slow in answering some of the queries (particularily those do not contain a  
specific URI as the subject or object in the statements and have a complex pattern of 
relationships among the individuals concerned). Given the simplicity of the BibTeX 
ontology and the model of the test data, we have not found any appropriate queries 
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representing complex connections between individuals. For the present queries in 
LBBM, Sesame was able to answer them rather quickly.  

The ontology and test data used in our LBBM, although described in OWL lan-
guage, is essentially an RDFS ontology. The case is similar for the test queries. It is 
known that Sesame is developed as an RDF repository. We believe it is more opti-
mized for processing RDF-style data and queries than systems like DLDB-OWL and 
OWLJessKB. The result has clearly showed that Sesame has become a better choice 
than the other two systems for the applications in a similar domain to what our LBBM 
represents. Overall, the experiment has verified that the ontology and instance data 
could make a difference in both the capability and performance of the same system. 
This demonstrates the need for using a benchmark that resembles the domain in which 
the evaluated systems are intended to be applied. 

4   Evaluation of the Data Generation Technique 

We claimed our tool is capable of generating a legitimate substitute to the real data. 
To examine this assumption, we take subsets of the original file, generate synthetic 
data using the subset as the training file, and compare the benchmark result of the 
synthetic file to that of the original file. A subset was derived by randomly selecting 
an individual and taking it along with all neighboring individuals two hops away from 
it into the subset. The definition of neighboring individuals, however, is a tricky ques-
tion. Consider the data as a huge directed graph. The resulting sets of neighbors are 
different when considering neighbors via link direction or just via links. We take both 
subset selection schemes into consideration.  

In additional to the synthetic data and the original data, we also generated two 
other sets of data for comparison. They both use a tool that can parse a given ontol-
ogy, let user specify the kind of triples and the min/max cardinality of that kind of tri-
ple, let user specify min/max number of individuals of a certain class, and generate 
data according to the given parameters in a uniform distribution. The first set of data 
has parameters assigned by a domain expert (based on knowledge about the kinds of 
triples and approximate ratio between different classes of individuals). The second set 
is generated by assigning the parameters according to a series of random numbers.  

The size of the original file is one million. We have subsets of sizes 125, 250, 500, 
1000, 5000, 10000, 20000, and 50000 triples. For each size, we have a subset that in-
cludes directional neighbors and one that includes neighbors regardless of directions. 
These subsets are used as training files to generate a set of synthetic data consisting of 
one million triples. The two data sets generated according to domain knowledge and 
completely randomly also consist of one million triples.  

The system for evaluation is the memory-based Sesame-DB. Eleven queries were 
designed so that the first half of the queries are bound to have results in almost any 
kind of data, while the second part is more likely to have answers for more realistic 
data. The set of queries can be found at [24]. The experiment is conducted on a 
PowerBook G4 with environment as follows: 1) 1.0GHz PowerPC G4 CPU; 2) 
512MB of RAM; 60GB of hard disk; 3) Mac OS X 10.3.9; 4)Java SDK 1.4.2.  

Fig 5. shows the result of the query time verses the size of the training files for se-
lected queries. In the legends, “orig” refers to the result from the original Bibtex data, 
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“man” refers to the data generated with domain knowledge, “rand” refers to the set of 
data generated completely randomly, “dir” refers to the set of results with training 
files subsetted with direction of the links considered, while “non-dir” refers to those 
that does  not. Other queries have either close-to-zero query time or zero results thus 
are less valuable to present here. In Fig 5. Q5, the performance from the completely 
random dataset is omitted, because it performs so bad that it will flatten out other in-
formation in the graph. The query time for query 5 in the completely random dataset 
is 330493ms.  
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Fig. 5. Query Time verse different sizes of training file in selected queries 

For Fig 5 Q3, the data from non-directional scheme returns far more results than 
the original file, while the data from directional scheme performs reasonably well. 
This query asks for all InProceedings that have at least one author and one editor. One 
possible explanation is that while almost all InProceedings have at least one author, 
the number of InProceedings having editors are relatively fewer. At the same time, the 
probability that someone is an editor isn’t uniform either: some people are more likely 
to be editors for several publications. In the non-directional selection scheme, as long 
as we selected a publication with editors, or selected someone being editor, the prob-
ability of the data two hops away having the property editor is higher than normal. 

In Fig 5 Q5, the non-directional selection scheme outperforms the directional one. 
The query is asking for people with more than two publications. This might be ex-
plained by that when an individual is selected, it is less likely for the directional 
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scheme to get all the publication from someone because the link’s direction is from 
publication to author/person.  Fig 5 Q8 might be explained similar to that in Q3. This 
query asks for publication with publisher specified. For the non-directional scheme, it 
is likely to select a bunch of individuals from the same source Bibtex file, thus more 
likely than normal to have the attribute publisher.  

From the figures we can see that the benchmark result of the synthetic data given  
representative training data, can be almost identical to the original file at best, and still 
better than completely random data at worst. Furthermore, these results can be 
achieved with a training set of only 10000 triples. The experiment shows that the  
synthetic data generator presented here can be a reasonable substitute for benchmark 
systems if insufficient data is available, or if the user wishes to create a benchmark 
without the pain of collecting a large amount of data.  

Ideally, we would like to repeat the experiment on other ontologies. However, the 
lack of sufficient real-world data had made this impossible. The most likely next can-
didate for such experiments is the FOAF data. However, current available FOAF data 
can only contribute about 60000 triples, which is only a fraction to the size of the cur-
rent experiment. The difference in the magnitude in the size of the two datasets will 
make the comparison meaningless. 

5   Related Work 

The benchmark data generation tries to discover the patterns in the real world data 
and reflect them in the synthetic data generation. Our work is influenced by the asso-
ciation rule mining in the data-mining research [1]. A classic example of association 
rule mining is for the supermarket retailers to try to identify association relationships 
between the items bought in one customer transaction. For example discover if milk is 
often bought together with bread. We take advantage of the structural nature of the 
Semantic Web data. The definition of a transaction is analogous to that of the individ-
ual in our approach, and patterns are found within the transaction/individual.  

There are some other works that exploit similar techniques for the Semantic Web 
but for different purposes from ours. For example, Maedche and Staab [19] have stud-
ied ontology learning for the Semantic Web. They make use of a modification of the 
generalized association rule learning algorithm for discovering properties between 
classes. 

Our work on benchmarking Semantic Web KB systems has emphasized on the 
support of evaluating the systems with respect to large amount of data and extensional 
queries upon the data. This makes our work different from others. For instance, Al-
exaki et al. [2] have developed some benchmark queries for RDF, however, these are 
mostly intensional queries. Some attempts have been done by Elhaik et al [10] and 
Horrocks and Patel-Schneider [14] to benchmark description logic systems. The  
emphasis of this work is to evaluate the reasoning algorithms in terms of the tradeoff 
between expressiveness and tractability in description logic. Our work is not a de-
scription logic benchmark. Moreover, unlike our approach, such benchmark data gen-
eration as used in [10] does not take account of simulating the real world data. Lastly, 
the Web Ontology Working Group provides a set of OWL test cases [8]. They are in-
tended to provide examples for, and clarification of, the normative definition of OWL 
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and focus on the completeness and soundness with respect to individual features. Dif-
ferent from our benchmarks, they are not suitable for the evaluation of scalability. 

6   Conclusion 

In this paper, we have considered the issue of rapid development of benchmarks for 
Semantic Web knowledge base systems. In our previous work, we have used the Le-
high University Benchmark (LUBM) to evaluate several contemporary systems. 
LUBM is bound to a specific ontology and its data generation is based on statically 
encoded rules. The university ontology that we used in LUBM is categorized as a de-
scription logic-style ontology. The benchmark represents certain classes of Semantic 
Web applications but not all. It is difficult and inefficient if not completely impossible 
to generate benchmarks that will cover the wide variety of Semantic Web applications 
that are possible. In light of this, in this work, we have moved forward by introducing 
a method for generating benchmark data of any chosen domain in a very time effi-
cient manner. We have achieved this by developing a data generation approach that 
does not depend on statically encoded rules. This method constructs a probabilistic 
model that can extract statistical features from real world data that are important for 
benchmarking. A Monte Carlo algorithm is used to generate synthetic data that have 
similar features to that of the real world data based on the model constructed.  Ex-
periments have been conducted to show that the benchmark using the synthetic data 
has a performance very similar to the one that uses real world data at best, and still 
outperforms the data generated without knowledge of the real-world data at worst. We 
have shown that our data generation provides a reasonable substitute for large quan-
tity of real world data. 

We have used this new approach to create another benchmark called Lehigh Bib-
TeX Benchmark (LBBM) within a considerably short period. LBBM is different from 
LUBM in the sense that it represents the use of a database schema-like ontology and 
more RDF-style data and queries. We have used this new benchmark to evaluate two 
main memory-based systems (memory-based Sesame and OWLJessKB) and two sys-
tems with persistent storage (database-based Sesame and DLDB-OWL). They are the 
same systems in our previous LUBM experiment. We compared both experiments 
and pointed out the difference between their results. The experiment has verified that 
the characteristics of ontology and data used in the benchmark can make a difference 
in the evaluation of the systems. We argue this demonstrates the necessity of choosing 
a representative benchmark for the intended application of the systems and thus the 
need for a variety of Semantic Web knowledge base benchmarks. We intend for our 
approach presented herein to play a promotional role in this regard.  
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