
Introducing Autonomic Behaviour
in Semantic Web Agents

Valentina Tamma, Ian Blacoe, Ben Lithgow-Smith, and Michael Wooldridge

Department of Computer Science, University of Liverpool,
Liverpool L69 3BX, United Kingdom

Abstract. This paper presents SERSE – SEmantic Routing SystEm– a distributed
multi-agent system composed of specialised agents that provides robust and ef-
ficient gathering and aggregation of digital content from diverse resources. The
agents composing SERSE use ontological descriptions to search and retrieve se-
mantically annotated knowledge sources, by maintaining a semantic index of the
instances of the annotation ontology. The efficient retrieval is made it possible
through the semantic routing mechanism, that permits to identify the agent in-
dexing the resources requested by a user query without having to maintain a cen-
tral index, and by reducing the number of messages broadcasted to the system.
The system is also capable of exhibiting autonomic behaviour. Autonomic be-
haviour is characterised by self configuration and self healing capabilities, aimed
at permitting the system to manage the failure of one of its agents and ensure
continuous functioning.

1 Introduction

The Semantic Web primarily aims to share knowledge from distributed, dynamic, and
heterogeneous sources, whose content is expressed in a machine-readable format by
means of languages such as RDF [1] and OWL, in a similar way to that in which in-
formation is shared on the World Wide Web. Agents play an integral role in this vision;
they use these machine-readable representations to gather and aggregate knowledge, as
well as to reason in order to manage inconsistencies, and to infer new facts. Together
with their ability to process Semantic Web content, agents contribute features, such as
distribution, autonomy, and social ability, that make them particularly suited to man-
age large, heterogenous, and distributed knowledge bases. In recent years, many tools
have been developed for managing traditional knowledge sources, but such approaches
usually imply a centralised, and static environment where the ultimate control is cen-
tralised. This type of approach does not promise to scale well to the Semantic Web,
which is an open, dynamic, and often chaotic environment.

Distributed, decentralised systems are thought to be a better alternative for scalabil-
ity [2]; their architecture is characterised by system components each with equal roles
and the capability to exchange knowledge and services directly with each other. Peer-
to-peer technology (P2P) such as Edutella [2] or Morpheus [3] is a possible answer to
this quest for decentralisation. P2P systems are networks of peers with equal roles and
capabilities, and recently peer-based management systems have been proposed, which
exploit P2P technology for sharing and retrieving huge amounts of data [4]. However,

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 653–667, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

654 V. Tamma et al.

most approaches are oriented at file sharing, rather than at the management of semanti-
cally enriched content as provided by the Semantic Web. The agent paradigm seems to
offer equally good prospects for the management of semantically annotated content: on
the one hand, agents are intrinsically distributed, and platforms for agent oriented pro-
gramming offer standardised communication protocols and management mechanisms
(for instance, Jade [5]). On the other hand agents can provide “smart”, service-based
support for autonomous semantic web tools, and well-automated discovery mecha-
nisms for advertising and locating resources within an open framework, established
trust and reputation frameworks, and proactive support for fact maintenance [6]. One
way in which the adoption of the agent-oriented paradigm can be beneficial to semantic
web applications is by making them exhibit autonomic behaviour. Autonomic comput-
ing is an emerging branch of software engineering promoting the design and imple-
mentation of self-managing systems, many of which consist of several interacting, au-
tonomous components that in turn comprise large numbers of interacting, autonomous,
self-governing components at the next level down [7]. This type of behaviour is intended
to make it easier to manage the complexity and scalability of complex distributed sys-
tems, such as those to manage Semantic Web content.

In this work we concentrate on the robust and efficient gathering and aggregation of
digital content from diverse resources. We developed a multi-agent system composed
of specialised agents that is able to search and retrieve semantically annotated knowl-
edge sources. In addition to searching for digital content, the semantic information used
to annotate resources is used to explore the addition of autonomic features to the sys-
tem, in order to equip it with self-management and self-healing capabilities, aimed at
permitting the system to manage the failure of one of its agents and ensure continuous
functioning. In this paper we introduce the system SERSE (SEmantic Routing SystEm)
and its main functionalities. This paper extends our previous work in this area [8,9] by
introducing the autonomic behaviour features exhibited by SERSE and by presenting
details of its multi-platform implementation. In the remainder of this paper we describe
the system’s conceptual architecture and the information flow between the system com-
ponents. We examine the two main functionalities offered by the system, namely query
management and autonomic behaviour, and we present a set of experiments aimed at
evaluating the performance for each of these functionalities.1

2 SERSE

SERSE’s primary goal is to enable the semantic retrieval and aggregation of the digital
content of web resources. SERSE is designed as a multi-agent system composed of spe-
cialised agents capable of functioning in a scalable, self-managing, open, and dynamic
fashion. The system requires resources to be semantically annotated according to one or
more ontologies expressed in OWL, and at present is not capable of discovering anno-
tated resources autonomously. For this purpose SERSE relies on the Annotation System
component of Esperonto, that informs it of newly acquired content providing references

1 SERSE was developed as part of the now concluded Esperonto projectIST-2001-34373 whose
aim was to provide a set of tools for performing the transition from the traditional web to the
semantic web [8].

Introducing Autonomic Behaviour in Semantic Web Agents 655

to both the resources and their RDF annotations. The description of the Annotation Sys-
tem is outside the scope of this paper. However, for the purpose of describing SERSE, it
is sufficient to say that annotations are semi-structured representations of information
referencing instances (of one or more concepts in the annotation ontology) that appear
in the content of web resources. 2

The core of the system is represented by a network of specialised agents providing
indexing and routing functionalites, that permit them to efficiently retrieve resources
based on the semantics of their content. Each agent is specialised with respect to a
concept, meaning that it can access the resources whose annotations contain instances
of that concept, and it is only aware of those agents specialised with concepts that are
similar or related to its own. Therefore, the agent network is organised into semantic
neighbourhoods that mirror the structure of the ontology (in terms of the hierarchical
and specific relationships defined in the ontology).

Neighbourhoods are partially overlapping, and this permits the routing mechanism
to find the answer to a query in a limited number of hops, without having to browse
the whole ontology and without having to flood the network with a large number of
messages. Semantic neighbourhoods are automatically determined when the system
receives a notification of new ontological content – received as new concepts are used
to annotate resources. The neighbourhoods are not static but they dynamically change
as the system is required to handle further notification of new ontological content, or if
the ontology is modified (and a new version of the ontology is used in the annotation). In
this way, we have multiple overlapping neighbourhoods, each centred on one concept,
and agents have knowledge only of the agents composing their neighbourhood.

Indexing ontological content consists of creating structures that link resources, iden-
tified through their URLs, to RDF statements describing instances of the concepts in the
ontologies. The routing functionality permits SERSE to route queries to the agents that
are capable of retrieving the resources annotated with the concepts they are specialised
on. SERSE handles queries expressed in RDQL [10] (an RDF query language developed
by HP as part of the Jena toolkit) [11] on any combination of concepts and concepts
properties (including object properties). Complex queries are decomposed into simple
ones, each regarding a single concept. Each simple query is sent to one of the agents
in the network of routers, and the agent consults its index to determine whether it can
answer the query. If the agent cannot answer the query, then it routes the request to
the agent in its neighbourhood that handles the concept closest to the one in the query.
We evaluate similarity between concepts according to the approach proposed by [12].
However, we modified the algorithm so that it exhibits a greedy but less precise behav-
iour, implemented through heuristics, and that provides a higher number of potential
matches. Ehrig and Staab’s approach is aimed at ontology mapping, a process that can
be taken off line and requires high precision in order to establish the correct mappings.
Semantic routing is different in nature: the evaluation of similarity should be sufficiently
precise to determine a new agent to whom the query can be routed, not necessarily the
best agent. In addition, semantic routing is a dynamic process executed on line, and
therefore it requires fast computation in order to minimise the time spent by the user
waiting for an answer. We discuss in more detail the indexing and routing in Section 4,

2 We are currently working at making SERSE a standalone system.

656 V. Tamma et al.

where these functionalities are related to the component of SERSE’s architecture that
provides them.

In addition to the main indexing and routing facilities, the system is also intended to
be self-governing; it uses autonomic computing techniques to preserve index knowledge
and to adjust the index connections when one or more indices within the system are
unavailable. Autonomic behaviour is also used to maintain the system operative in case
of failure of one agent or one platform. Section 5 describes the mechanisms used to
implement autonomic behaviour in SERSE.

3 Conceptual Architecture

SERSE’s conceptual architecture is composed of six types of specialised agents provid-
ing different functionalities. The heart of the architecture is composed by the network of
Router agents, providing indexing and routing capabilities. These agents are com-
plemented by a number of other specialised agents providing ancillary services, that
implement system management functions. Figure 1 shows the different roles played by
agents in SERSE and the message flow in the system.

SERSE is built within JADE – a FIPA compliant agent deployment environment [5].
The system is designed to be distributed over a number of JADE platforms, on differ-
ent host machines, with each platform containing a part of the indexing system and its
own interface agent set. This enables the system to operate even when reduced to one
platform, and to dynamically reconfigure the index network in response to temporary
or permanent outages of agents and platforms in the system. It also uses the JENA se-
mantic web toolkit to handle RDFS, OWL, and RDQL. SERSE is able to use ontological

Fig. 1. SERSE conceptual architecture

Introducing Autonomic Behaviour in Semantic Web Agents 657

definitions expressed in either RDFS or OWL (Lite and DL), using the full range of ex-
pressions available. The different roles that agents play in SERSE are described below,
and Figure 2 shows the interactions between the different types of agents on a single
platform and on multiple platforms.

Fig. 2. SERSE architecture on a single platform and distributed over multiple platforms

– Router Agents: Router agents provide the core functionalities of the system:
indexing, routing and self-management. In order to provide these functionalities
agents maintain two types of indices, a content index and a routing index. The
content index stores the URI identifying the RDF statements referring to instances
of some resources, together with the URLs used to identify them. The routing index
stores the communications address and concept handled by each of the router agents
that are semantic neighbours. Routing indexes contain entries for three types of
neighbour links:
• actual: neighbour concepts which are handled by existing agents;
• ontology: neighbouring concepts (according to the ontology) for which no

agent yet exists; and
• implied: concepts outside the neighbourhood that are presumed to exist, and to

be linked to existing concepts. These links can be implied from the absence of
one or more ontology neighbours.

Implied and ontology neighbours are used to provide some of the self management
functionalities described in Section 5 and are used to query the routers even if the
generation of the network is not complete, and, more in general, in all cases when a
path between two agents should have been established, because they concern con-
cepts in the ontology that are related, but the link has not been created, yet. By
means of this mechanism, each agent is responsible for a sub-set of the total system
knowledge and has only localised knowledge of its semantic neighbours.

Router agents are also equipped with self management capabilities that
allow them to actively respond to changes in the state of their neighbourhood. In or-
der to ascertain the actual status of their neighbourhood, Router agents employ two

658 V. Tamma et al.

types of messages: they both monitor the result of their outgoing routing messages
(to verify that they do not return an error), and they periodically send heartbeat
messages [7] that “ping” their neighbour. In addition, Router agents periodically
save the state of their content and routing indexes enabling the knowledge to be
recovered following any failure of the agent. Router agents are distributed over
multiple platforms, while the other agents described below are replicated for each
of the platforms.

– Router Platform Agents: They enable the distribution over multiple plat-
forms and provide management services, such as the creation of a new Router
agent, for each agent platform on which the network of routers is distributed. The
Router Platform Agent is also responsible for triggering the dynamic cre-
ation and adjustment of the network of routers upon receipt of the notifications of
new content, as described in Section 5

– Notification Agents: They are the interface between each platform and the
Annotation System of Esperonto, and receive notifications regarding the annotation
of new resources, or the addition of new concepts in the ontology. They decompose
notifications regarding multiple concepts and re-send these atomic notifications into
the Router Agents network as Agent Communication Language messages.

– Interface Agents: They provide a connection between each agent platform
and the software components operating outside the platform, such as the web-based
query interface, by creating a socket interface and passing query and response ob-
jects across it.

– Query Management Agents (QMA): They decompose complex queries,
that involve multiple concepts linked by logical connectives, into atomic queries.
The atomic queries are then sent into the Router Agent network; when the
QMA receives the responses to each query, these are aggregated by re-applying
the logical connectives, thus producing a set of web resources that match the con-
straints expressed in the complex query. During the process duplicate instances are
identified and removed.

– Portal Agents: They act as a gateway into the Router Agent network,
through which all atomic notifications and queries are passed. Each platform in
the system has a Portal Agent, that maintains a list of significant points within
the router system, and send messages into the network by initially routing them to
the most appropriate of these points.

Finally, the other main component of SERSE is the web-based query interface. This
enables the construction of queries using concepts from multiple ontologies, logical
connectives between the concepts, and specification of the values of concept properties.
Responses to queries are displayed as lists of web resources, identified by URLs, that
match query constraints together with the URIs of the instances that annotate them. In
addition, query replies also contain a list of the concepts that are neighbours of each the
responding agents. This enables follow-up queries in which the original query is modi-
fied by changing property values of concepts, exchanging one concept for a similar one,
broadening or narrowing a query by substituting ontological ancestors or descendents
of a concept, etc.

Introducing Autonomic Behaviour in Semantic Web Agents 659

4 Query Management

As mentioned in Section 2, SERSE handles queries specified in RDQL on any combina-
tion of concepts and concept properties (including object properties). Queries are sent
from the local Interface Agent to the local QMA, where they are decomposed into
atomic queries. Query decomposition is achieved by syntactically parsing the query and
identifying blocks that form atomic queries, but preserve the semantics of the original
query.

The QMA sends each atomic query to the local Portal Agent, which forwards
each of them to the most competent Router Agent known to the local Portal
Agent. In the current implementation of SERSE, these agents are those which have
knowledge of the root nodes of each of the ontologies that have been notified to the
system. The purpose of this initial semantic routing is to enter the router network in
the general semantic area of the queried concept improving the efficiency of the routing
process. Although routing first to the root node agents might potentially be perceived
as a bottleneck, these agents are effectively those that are likely to have the smallest
workload from handling queries. In fact, in the domain ontologies used by SERSE, as
well as in most domain ontologies, the majority of the instances are direct instances
of very specific concepts (leaf nodes), whilst root nodes have few (if any) instances.
Therefore, the additional routing effort of these agents is compensated by answering
fewer queries. In addition, any set of significant entry points could become a bottleneck,
and alternatives are constrained by the processing necessary to identify the best entry
point, and message workloads.

Once an atomic query is received by the appropriate Router Agent, it extracts
the query constraints expressed in RDQL, then it consults its content index to check if
it stores the URI of instances of the query concept. Any instances that match the query
contribute to the answer set, which consists of a list of resources that are described by
matching instances, and is returned directly to the QMA that sent out the query. Included
in the query reply is information about the concepts handled by the replying Router
Agent and the agents address which is then used in follow-up queries. This then
enables users to semantically browse from one concept to other closely related concepts,
using knowledge about these relationships held by the Router Agent and revealed
by the original query.

If no instance is referenced in the content index, the query is routed to the semantic
neighbour with the most similar expertise This semantic routing mechanism is designed
to move messages in a series of hops across the network of Router Agents, until
the message is addressed to the Router Agent indexing instances of the concept in
the message.

5 Autonomic Behaviour

SERSE has been designed to autonomously react to a number of events that can affect its
processing. These include the notification of new ontology, but also exceptional events
such as the controlled shut down of an agent. The aim is to have a system that can work
in an open environment, such as the Semantic Web, and that is scalable, robust, and

660 V. Tamma et al.

requires limited human intervention for its functioning. For this reason, SERSE has been
designed as a multi-agent system in which agents can join and leave the system without
having to take (part of) the system off-line, or without degrading the performance of the
system.

Autonomic behaviour in SERSE supervises two main functionalities: dynamic man-
agement of the network of router agents, and failure management.

The management of the router agents consists mainly of the of the operations
to create the network of routers from scratch once the system is notified by the
Notification Agent that a new ontology is available. Failure management con-
sist of the functionalities that enable the system to continue to operate despite the tem-
porary or permanent loss of agents or whole platforms from an existing index network.
Autonomic behaviour is achieved by a number of different mechanisms:

– Creation requests messages: When the Notification Agent in one of the
platforms receives a notification of new annotation ontology, it determines au-
tonomously the root concept(s) and generates a creation request message for each
of these concepts, to be sent to the Router Platform Agent, that in turns,
creates a router agent for each root concept.

– Router network population: The population of the network of routers is triggered
by the notification of new content messages received by SERSE. If the message
notifies instances of a concept for which a router agent has not yet been created,
the Router Platform Agent creates a new Router agent, and each of
the neighbouring router agents affected by this event update their neighbourhood
indices, with the pointers to the new actual neighbours. In this situation, ontology
and implied links are created, in order to fill gaps between the existing routers and
the newly created one.

– Heartbeat monitor: Router Agents monitor the success of messages sent to
neighbours, and record this in their routing index. When messages are unsuccess-
ful the neighbour is first set to a warning level, and if failure continues for a short
time the entry is marked as unavailable. The neighbour will be considered avail-
able again if a message is received from it within a time period, but otherwise will
eventually be removed from the neighbourhood.

– Index backup and backup recovery: Router Agents periodically save their
knowledge to an XML backup file, which enables the recovery of knowledge fol-
lowing the failure of the Router Agent or platform. The knowledge stored in
the file consists of the contents of both the content index and routing index. Re-
covery from failure of a platform is addressed by having the Router Platform
Agent on start-up (following a manual platform re-start) check for saved state
files, and, if any are found, re-creating Router Agents using the stored knowl-
edge. Recovery from the failure of individual Router Agents is addressed by
them contacting the local Router Platform Agent when they shut-down,
and the Router Platform Agent will then use the saved state to re-create
the Router Agent.

– Router Agent shutdown procedure: When Router Agents are subject to a
controlled shut-down of their platform, they immediately save their knowledge to
file, and then contact each of their neighbours to inform them of the shut-down.

Introducing Autonomic Behaviour in Semantic Web Agents 661

This enables the neighbours to reactively adapt their neighbourhood connections
to reflect the loss of neighbour. Recovery from shut-down, like that for failure, is
initially a manual process but once started the Router Platform Agent will
detect the saved-states and restore the Router Agents.

6 Experimental Evaluation

We conducted a number of experiments aimed to analyse the performance of the two
main functionalities provided by the system: query management, and autonomic be-
haviour. In our experiments, we used two ontologies developed as part of the use-cases
of Esperonto, the Fund Finder and the Cultural Tour ontologies for which we had also
the annotated documents storing the instances of the concepts. The Fund Finder is ex-
pressed in OWL-Lite, and it is composed of around 50 concepts (12 of which are root
concepts), and of 118 instances. The Cultural Tour ontology is an RDFS ontology com-
posed of 60 concepts, and has more that 61000 instances.

In order to test the performance of the query management process we measured,
for each ontology, the round-trip reply time for a set of twenty fixed queries, listed in
increasing order of complexity. Figure 5 and Figure 6 illustrate the last query we posed
for each of the ontologies, in order to show the level of complexity of the queries used in
the experiments. The queries were posed to SERSE in sequence, and for each query we
performed 1000 repetitions, in order to guarantee the reliability of the results. Figure 3
shows the response time, averaged over the repetitions, for each of the ontologies. We
have compared these results with those obtained by qurying the static RDF model in
Jena, the response times averaged over 100 repetitions for each query are depicted in
Figure 4.

With respect to the autonomic behaviour exhibited by SERSE, we measured, for
each of the two ontologies, the query response time in two different scenarios. Scenario
1 aims to test how well SERSE copes with the notifications of new content. This was
achieved by creating new Router agents along the route of a query, by means of in-

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

tim
e

in
 m

ill
is

ec
on

ds
 o

ve
r

10
00

 r
ep

ea
ts

query number

The response time for queries 1 to 20

Fund Finder ontology

 0

 20000

 40000

 60000

 80000

 100000

 120000

 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

tim
e

in
 m

ill
is

ec
on

ds
 o

ve
r

10
00

 r
ep

ea
ts

query number

The response time for queries 1 to 20

Cultural Tour ontology

Fig. 3. SERSE response times in relation to queries about the Fund Finder and Cultural Tour
ontology

662 V. Tamma et al.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

tim
e

in
 m

ill
is

ec
on

ds
 o

ve
r

10
0

re
pe

at
s

query number

The response time for queries 1 to 20

Fun Finder ontology

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

tim
e

in
 m

ill
is

ec
on

ds
 o

ve
r

10
0

re
pe

at
s

query number

The response time for queries 1 to 20

Cultural Tour ontology

Fig. 4. Jena response times in relation to the same queries for each of the two ontologies

SELECT ?x, ?z WHERE
(?x, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Discount>)
(?x, <http://www.blacoe.uk/Fund_Finder.owl#Aims>, ?y)
(?y, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Objective>)
(?y, <http://www.blacoe.uk/Fund_Finder.owl#objectiveName>, "Company_Creation")
(?x, <http://www.blacoe.uk/Fund_Finder.owl#negotiated_by>, ?u)
(?u, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Negotiator_Body>)
(?u, <http://www.blacoe.uk/Fund_Finder.owl#actsForBody>, ?t)
(?t, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#State_Funding_Body>)
(?z, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#subvention>)
(?z, <http://www.blacoe.uk/Fund_Finder.owl#Deadline>, "30-juny-2005")
(?z, <http://www.blacoe.uk/Fund_Finder.owl#Aims>, ?w)
(?w, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Objective>)
(?w, <http://www.blacoe.uk/Fund_Finder.owl#objectiveName>, "Quality")
(?z, <http://www.blacoe.uk/Fund_Finder.owl#hasRelatedRegulation>, ?v)
(?v, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Diari_Oficial_de_la_Generalitat_de_Catalunya>)
(?v, <http://www.blacoe.uk/Fund_Finder.owl#date>, "26/04/1996")

Fig. 5. Query number 20 for the Fund Finder ontology

SELECT ?x, ?z WHERE
(?x, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#RelacionExistenciaPersona>)
(?x, <http://www.blacoe.uk/tesauro#referencia>, "500001146")
(?x, <http://www.blacoe.uk/tesauro#entidad_existente>, ?y)
(?y, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#Persona>)
(?y, <http://www.blacoe.uk/tesauro#fuente>,

"Nadia Sokolova [Barcelona (CapCom) : Espaa?, ? - Barcelona (CapCom) : Espaa?, ?]")
(?y, <http://www.blacoe.uk/tesauro#autor_anotacion>, "prototipo")
(?z, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#RelacionCreacion>)
(?z, <http://www.blacoe.uk/tesauro#estado>, "provisional")
(?z, <http://www.blacoe.uk/tesauro#creacion_relacionada>, ?w)
(?w, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#ObraLiteraria>)
(?w, <http://www.blacoe.uk/tesauro#tipo_obra_literaria>, "articulo")
(?w, <http://www.blacoe.uk/tesauro#referencia>, "EL PASEO DE ROSALES ")

Fig. 6. Query number 20 for the Cultural Tour ontology

Introducing Autonomic Behaviour in Semantic Web Agents 663

troducing messages notifying the acquisition of new content – that is, of new resources
containing instances of some concept that was not instantiated before. The experiment
was designed to implement the following procedure:

1. Remove all notifications concerning resources containing instances of a concept,
for instance Organisation Applicant in the Fund Finder ontology;

2. Add a new notification for the concept SME, subsumed by Organisation
Applicant;

3. Build SERSE: this consists of starting the Router Platform agent for the
platforms, loading the ontology model and the notifications, and the dynamic gen-
eration of the network of routers from the notifications;

4. Run query no. 1, an atomic query with subject SME;
5. Notify one resource with instances of Organisation Application;
6. Run query no. 2, an atomic query with subject SME;
7. Notify one resource with instances of Company;
8. Run query no. 3, an atomic query with subject SME;

Figure 7 illustrates the relations existing between the concepts in the ontology that
are used in the notifications and queries of Scenario 1. Scenario 2 aims to test how the
system responds to an increase in the workload due to introducing agents in the se-
mantic neighbourhood, and hence to the increase in the number of semantic similarity
(and relatedness) calculations that needs to be performed during the semantic routing
process. The process followed to set up the experiment mirrors the process followed in
Scenario 1, but it uses different parts of the ontologies, and receives notifications related
to five concepts.

Figure 8 shows the response times for the queries posed to the system in both scenar-
ios. The experimental data concerning the round trip response time to different queries
shows that the query management process implemented in SERSE takes a longer time to
answer the queries when compared with Jena. This result is quite predictable because
SERSE adds the overhead of the messages exchanged in order to enable the seman-
tic routing and the system’s self management . However, SERSE is still quite efficient,
keeping the response time generally under the second. In that respect the results ob-
tained are very promising. However, there some anomalies with queries number 14, 15,
18, and 19 in the Cultural Tour ontology. We have identified a number of reasons that
contribute to these anomalies:

Fig. 7. The Fund Finder concepts used in the experiments of Scenario 1

664 V. Tamma et al.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1 2 3 4 5 6

av
er

ag
e

tim
e

in
 m

ill
is

ec
on

ds

query number

The response time for the notification of new resources

SME concept

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1 2 3 4 5 6

av
er

ag
e

tim
e

in
 m

ill
is

ec
on

ds

query number

The response time for new agents in the neighbourhood

Diari_Oficial_de_la_Generalitat...

Fig. 8. Response times in relation to the queries in Scenario 1 and Scenario 2

1. Number of instances returned by each atomic query: For each query we match large
sets of instances by URI, and then we match them with the corresponding resources
by URL.

2. The time that RDQL takes to process the RDF model: This time varies considerably,
as it can be seen by the values in Figure 3, and it is proportional to the number of
statements in the RDF model.

3. Large sets of instances and resources returned: the resulting query result messages
are quite large and the transmission time increases.

4. Time necessary to check for duplicates when large number of resources are returned
as results of complex queries.

5. Number of semantic calculations performed: that is the length of the routing path
and the number of neighbours for each of the agents in the path. The effect of the
increase in the number of calculations is, however, negligible, as confirmed by the
experiments for Scenario 1 and Scenario 2.

With respect to the results obtained when testing the autonomic behaviour, we can
see that SERSE is able to dynamically adjust its network of routers in order to cope with
the notification of new content and with the addition of new agents to the neighbour-
hood, without degrading the performance in terms of response time. Figure 8 shows
how the increase in response time remains controlled despite the introduction of new
content and new agents in the neighbourhood.

7 Related Work

Autonomic computing is a new engineering paradigm that aims at building computing
systems that are self managing [7]. Usually, self managing systems are expected to
exhibit four main properties:

1. self configuration: the ability to configure itself according to high level goals;
2. self optimisation: the ability to optimise the use of resources;
3. self healing: the ability to react to the signs of a possible problem, by detecting it,

and, if possible, fixing it;
4. self protection: the ability to defend itself from malicious attacks as well as from

human error.

Introducing Autonomic Behaviour in Semantic Web Agents 665

These characteristics remind of those defining the notion of agency and in [7] the au-
thors claim that “autonomy, proactivity, and goal-directed interactivity with their envi-
ronment are distinguishing characteristics of software agents [13]. Viewing autonomic
elements as agents and autonomic systems as multiagent systems makes it clear that
agent-oriented architectural concepts will be critically important”. Hence, it is not sur-
prising that many notions of autonomic computing are found in multi-agent systems
(MAS) literature. An example is the use of an hearbeat message broadcasted regularly
in a MAS, organised as in peers or as a network, in order to monitor the status of the
other agents [14].

Self healing has been analysed in [15], where the authors present a team of broker
agents, which share global knowledge about the system. This global knowledge is used
to discover that a broker has been disconnected from the rest of the system and to in-
form the other brokers of the event. IBM has developed theABLE agent platform [16]
that reduces the workload of the system administrator by supporting autonomic agents.
Finally, in [17] provide a review of the various architectural issues in autonomic com-
puting.

From the multi-agent literature perspecitve, SERSE can be classified among the co-
operative information agents, such as RETSINA [18], and InfoSleuth [19]. RETSINA is a
matchmaker based information system where collaborative task execution is achieved
through matching service providers and requesters over the web (and more recently,
over the Semantic Web). InfoSleuth explicitly deals and reconciles multiple ontologies
by means of specialised ontology agents that collectively maintain a knowledge base
of the different ontologies used to specify requests, and return ontology information as
requested.

As mentioned in Section 1, P2P systems have been recently used to reduce the
complexity of distributed knowledge management applications. A typical example of
such an application is EDUTELLA [2], a hybrid P2P architecture for sharing metadata,
that implements an RDF-based metadata infrastructure for JXTA [22]. However, the
emphasis is more on RDF repositories of metadata rather than on the representation
of semantic information in possibly heavy-weight ontologies. Some other projects use
“super-peers”, which start the semantic routing process in the right direction.

An aspect of peer-to-peer networks that needs to be especially analysed is scalabil-
ity. The way in which queries are propagated in the network determines how the net-
work itself will scale. Networks where queries are broadcasted to all peers will hardly
scale, unlike those networks implementing intelligent mechanisms for broadcasting the
queries only to those few selected peers that are able to answer the queries. At this end
have been developed several routing protocols that manage distributed indices used to
handle complex queries. Examples of such protocols are CAN [23] and Chord [24].

Other approaches emphasise the use of semantics represented in ontologies. Among
these there is the SWAP project [25]. In SWAP, each node is responsible for a single on-
tology: ontologies might represent different views of a same domain, multiple domains
with overlapping concepts, or might be obtained by partitioning an upper level ontol-
ogy. Knowledge sharing is obtained through ontology mapping and alignment, however
mappings are not dynamically obtained.

666 V. Tamma et al.

More recently, GridVine [28] support complex queries in RDQL, that consist of
triple patterns with more than one bound variable, thus providing the possibility of ask-
ing sophisticated queries, and thus implementing scalable semantic overlay networks.
However, GridVine does not deal with ontology management operations in each of its
peers.

8 Conclusion

In this paper we presented SERSE – SEmantic Routing SystEm– a distributed multi-
agent system composed of specialised agents that provides robust and efficient gath-
ering and aggregation of digital content from diverse resources. The agents compos-
ing SERSE use ontological descriptions to search and retrieve semantically annotated
knowledge sources, by maintaining a semantic index of the instances of the annotation
ontology. The efficient retrieval is made it possible through the semantic routing mech-
anism, that permits to identify the agent indexing the resources requested by a user
query without having to maintain a central index, and by reducing the number of mes-
sages broadcasted to the system. The system is also capable of exhibiting autonomic
behaviour. Autonomic behaviour is characterised by self-management and self-healing
capabilities, aimed at permitting the system to manage the failure of one of its agents
and ensure continuous functioning.

We tested the performance search and retrieval capabilities of the system, and the
experimental data shows that SERSE generates generally maintains the response times
under the second, showing that the overhead produced by the indexing and routing
mechanisms does not impact the system performance. We also tested the autonomic
behaviour, and the experimental results show how the system is able to efficiently self
configure.

Acknowledgements

The authors would like to thank Terry Payne for his comments on this paper.

References

1. Decker, S., et al.: The semantic web: The roles of XML and RDF. IEEE Internet Computing
4 (2000) 63–74

2. Nejdl, W., et al.: EDUTELLA: A p2p networking infrastructure based on rdf. In: Proceedings
of the WWW2002, Honolulu, Hawaii, USA (2002) 604–615

3. The Morpheus website. (http://musiccity.com)
4. Halevy, A., et al.: Schema mediation in peer data management systems. In: Proceedings of

the International Conference on Data Engineering (ICDE03), Bangalore, India (2003)
5. Bellifemine, F., et al.: JADE a white paper. EXP In search of innovation 3 (2003)
6. Tamma, V., Payne, T.: Toward semantic web agents: Agentlink and knowledge web.

AgentLink newsletter 19 (2005)
7. Kephart, J., Chess, D.: The vision of autonomic computing. Computer magazine 36 (2003)

41–51

Introducing Autonomic Behaviour in Semantic Web Agents 667

8. Tamma, V., et al.: SERSE: searching for semantic web content. In: Proceedings of ECAI
2004. (2004)

9. Tamma, V., et al.: SERSE: searching for digital content in esperonto. In: Proceedings of
EKAW 2004. (2004)

10. RDQL (http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/)
11. The Jena website. (http://www.hpl.hp.com/semweb/jena2.htm)
12. Ehrig, M., Staab, S.: QOM quick ontology mapping. Number 3298 in LNCS (2004) 683–697
13. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge engineer-

ing review 10 (1995) 115–152
14. Sterritt, R., Bustard, D.: Towards an autonomic computing environment. Proceedings of 14th

International Workshop on Database and Expert Systems Applications, 2003
15. Kumar, S., Cohen, P.: Towards a fault-tolerant multi-agent system architecture. In: Proceed-

ings of Agents 2000.
16. Bigus, J.P., et al.: ABLE: A toolkit for building multiagent autonomic systems. IBM Systems

Journal 41 (2002)
17. McCann, J., Huebscher, M.: Evaluation issues in autonomic computing. International Work-

shop on Agents and Autonomic Computing and Grid Enabled Virtual Organizations (AAC-
GEVO04), Wuhan, China (2004)

18. Sycara, K., et al..: Dynamic service matchmaking among agents in open information sys-
tems. ACM SIGMOD Record. Special Issue on semantic interoperability in global informa-
tion systems (1998)

19. Bayardo, Jr., R., et al.: InfoSleuth: Agent-based semantic integration of information in open
and dynamic environments. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data. Volume 26,2., New York, ACM Press (1997) 195–206

20. Ehrig, M., et al.: The SWAP data and metadata model for semantics-based peer-to-peer
systems. In: Proceedings of MATES-2003. Number 2831 in LNAI, Springer (2003)

21. Castano, S., et al.: Ontology-addressable contents in p2p networks. In: Proc. of WWW’03
1st SemPGRID Workshop. (2003)

22. Project JXTA. (http://www.jxta.org)
23. Ratnasamy, et al.: A scalable, content addressable network. In: Proceedings of ACM SIG-

COMM. (2001)
24. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup service for internet applications. In:

Proceedings of ACM SIGCOMM. (2001)
25. SWAP: Semantic web and peer-to-peer. (http://swap.semanticweb.org)
26. Arumugam, M., et al.: Towards peer-to-peer semantic web: A distributed environment for

sharing semantic knowledge on the web. In: Proceedings of WWW2002, Honolulu, Hawaii,
USA (2002)

27. Lima, T., et al.: Digital library services supporting information integration over the web. In:
Proceedings of WIIW 2001. (2001)

28. Aberer, K., et al.: Gridvine: Building internet-scale semantic overlay networks. Number
3298 in LNCS (2004) 107–121

	Introduction
	SERSE
	Conceptual Architecture
	Query Management
	Autonomic Behaviour
	Experimental Evaluation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

