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Abstract. Ontologies are today a key part of every knowledge based
system. They provide a source of shared and precisely defined terms,
resulting in system interoperability by knowledge sharing and reuse. Un-
fortunately, the variety of ways that a domain can be conceptualized
results in the creation of different ontologies with contradicting or over-
lapping parts. For this reason ontologies need to be brought into mutual
agreement (aligned). One important method for ontology alignment is
the comparison of class and property names of ontologies using string-
distance metrics. Today quite a lot of such metrics exist in literature. But
all of them have been initially developed for different applications and
fields, resulting in poor performance when applied in this new domain.
In the current paper we present a new string metric for the comparison
of names which performs better on the process of ontology alignment as
well as to many other field matching problems.

1 Introduction

It is widely recognized today that ontologies are going to play a key role in the
realization of almost all modern knowledge based application. They have already
been successfully applied in fields like the World Wide Web [1], intelligent multi-
media systems [2] and many more. Ontologies are used in order that distributed
and disparate applications and systems overcome semantic heterogeneity and
enable them interchange knowledge for the completion of more complex tasks.
But, the various ways that different organizations conceptualize a domain or
the fact that they purpose ontologies for different applications, thus modelling
a different perspective of the world or the same but with different constraints
and properties, results in heterogeneous ontologies which still have to be brought
into mutual agreement.

To overcome this heterogeneity, scientist have developed methodologies and
tools for assisting the (still) semi-automatic process of ontology alignment. This
process provides us with semantic correspondences among the entities that ex-
ist within two heterogeneous ontologies. Nowadays, many techniques have been
developed, or borrowed from other fields, in order to discover the semantic cor-
respondences among entities. Among these methods a very popular one is the
comparison of the class and property names of the ontologies using a string dis-
tance metric so as to produce a degree of similarity. Such a technique is referred
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to as terminological matching. Even if the core methodology of a platform is not
based on this technique an initial similarity extraction step is usually performed
using this method. This technique is based on the fact that the same concepts
are likely to be modelled using quite similar names. Many platforms that use
such a methodology to compute similarities between ontologies exist in litera-
ture; some examples are, Anchor-PROMPT [3], QOM [4], Cupid [5] and many
more.

Though powerful string metrics exist in literature, and have been used suc-
cessfully in the past, from our experience with the development of a new ontology
alignment platform, they don’t perform well when used in this new demanding
and complex domain. In this paper we present a new string metric which is
created by paying special care to each different characteristic of the process of
ontology alignment, thus leading to a metric with very good performance.

The rest of the paper is organized as follows. In section 2 we review the most
frequently used string metrics found in literature. In section 3 we present the
requirements that the field of ontology alignment introduces and explain why the
usual string metrics fail to satisfy these requirements by giving small examples.
These specifications will guide us during the definition of the new string metric
which is introduced in section 4. In section 5, we present two evaluation experi-
ments and strength our points about the bad behavior of the classical metrics.
In section 6 we integrate our new metric in a new ontology alignment platform
to see its behavior when it is used in a more complete ontology platform and at
last section 7 concludes the paper.

2 Related Work

Today quite a lot of string metrics exist in literature. These string metrics have
been developed and applied in different scientific fields like statistics, for prob-
abilistic record linkage [6], database, for record matching [7], Artificial Intelli-
gence, for supervised learning [8], and Biology, for identifying common molecular
subsequences [9]. In the current paper we have considered the Levenstein [10]
distance, which counts the insertions and deletions needed to match two strings,
the Needleman-Wunsch [11] distance, which assigns a different cost on the edit
operations, the Smith-Waterman [9], which additionally uses an alphabet map-
ping to costs and the Monge-Elkan [7], which uses variable costs depending on
the substring gaps between the words. Moreover we used the Jaro-Winkler [12,6]
similarity, which counts the common characters between two strings even if they
are misplaced by a “short” distance, the Q-Gram [13], which counts the num-
ber of tri-grams shared between the two strings and the sub-string distance [14]
which searches for the largest common substring.

3 Desired Properties

Ontology alignment is a relatively new field in computer science. Thus, none of
the classical string metrics has been created having the properties and charac-
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teristics of this field in mind. Algorithms that are used in ontology alignment
are very complex and contain many features and parameters that can affect the
performance even of commonly accepted and “good” string metrics, when they
are used in this new context. Features like the threshold (the value above which
two pairs are considered identical), or the cardinality of mappings (“one-to-one,
one-to-many” etc.) play a key role in ontology alignment and as we will see the
metrics found in literature sometimes fail to give satisfactory results cause of the
existence of these parameters. Thus, before we define our string metric we think
that it is crucial to state the specifications that we want such a string metric to
fulfill. More precisely we want the new metric to be:

1. Fast: Since ontologies are used in applications that demand processing in
real-time, like the semantic web or intelligent retrieval tasks, the complexity
of the string metric should be very low, leading to a fast matching procedure.

2. Stable: As we aforementioned, one very crucial parameter of ontology align-
ment algorithms is their threshold. When we will demand from alignment
platform to automatically operate on the semantic web their threshold would
probably be fixed at a value considered optimal by their authors. Though
some methods that automatically adjust the threshold during runtime exist
in literature [15] it cannot be proved that they select the optimum value for
threshold each time an alignment is performed. Thus, we demand by the
string metrics to be as “stable” as possible. By “stability” we define the
ability of a string metric to perform almost optimal even if small diverges
from the optimal threshold take place. As we will see all metrics fail to sat-
isfy this crucial property. Even worst, classical metrics are really sensitive
in small changes of the threshold, and while they can provide good results
if the threshold is optimized, this performance can rapidly decrease if we
slightly disturb the value of the threshold.

3. Intelligent: When operating for example in the semantic web context, it
is likely that an ontology be compared to an irrelevant one, but with which
string resemblances occur. In this case we want our metric to identify all the
differences and provide us with correct results. But it is not uncommon the
situation where usual string metrics fail to identify cases where two strings
represent completely different concepts but resemble a lot. Consider for ex-
ample the words “score” and “store”. They represent two completely differ-
ent concepts. Though this is true the Monge-Elkan, Levenstein, SubString,
Needleman-Wunsch, Q-Gram and Jaro-Winkler metrics rate the pair with
a similarity degree of 0.68, 0.8, 0.6, 0.9, 0.57 and 0.88 which are relatively
hight values. In contrast our string metric assigns a value of 0.45.

4. Discriminating: One of the most usual cardinalities requested for align-
ment mappings is the “one-to-one” cardinality. As it is obvious in an “one-
to-one” mapping if a string in a reference ontology is mapped with the same
similarity degree to more than one in the second ontology it is very prob-
able that the algorithm fails to pick the correct pair from the set of pairs.
Hence, we would like from our similarity metric to rarely assign the same
similarity degree when we compare one particular string to several others.
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Many times during the experiments we faced situations where several runs of
an alignment between two ontologies using the same configuration produced
different precision and recall [16] values cause of this phenomenon.

From the above analysis it is obvious that ontology alignment is indeed a
demanding and delicate process that adds many constraints to the string metrics
used in it.

4 Definition of the String Metric

In the current section we sill introduce the new string metric, using as our guide
the properties and features introduced in the previous section.

The new metric is based on the intuitions presented in [17] about the simi-
larity between two entities. We argue that the similarity among two entities is
related to their commonalities as well as to their differences. Thus, the similarity
should be a function of both these features. This feature also appears, sometimes
implicitly, in other measures as well. For example, in those measures that per-
form string editing, such operation can be considered as a form of difference
counting, while non-editing can be considered as similarity counting. Thus, our
metric is defined by the following equation:

Sim(s1, s2) = Comm(s1, s2) − Diff(s1, s2) + winkler(s1, s2) (1)

where comm(s1, s2) stands for the commonality between s1 and s2, diff(s1, s2)
for the difference and winklerImpr(s1, s2) for the improvement of the result
using the method introduced by Winkler in [6]. We now have to define the
functions of commonality and difference.

The function of commonality is motivated by the substring string metric. In
the substring metric the biggest common substring between two strings is com-
puted. This process is further extended by removing the common substring and
by searching again for the next biggest substring until no one can be identified.
The sum of the lengths of these substrings is then scaled with the length of the
strings. The intuition behind this extension of the substring metric is the follow-
ing. In the field of Computer Science researchers tend to use descriptive names
for their variables or the units that represent real world entities. In other cases
they tend to concatenate words and create new ones. For example in order to rep-
resent the concept of the number of pages of a book it is likely that someone uses
the word “numberOfPages” or someone else might use the word “numPages”. As
one can see these two strings share not one but two common substrings which is
very crucial to identify in order to approximate their real similarity as much as
possible. Moreover, we can now distinguish cases like the above with cases where
the substring “Pages” is shared but the rest of the strings are quite different,
thus satisfying the specification for an intelligent metric. Hence, the function of
commonality is given by the following equation:

Comm(s1, s2) =
2 ∗ ∑

i length(maxComSubStringi)
length(s1) + length(s2)

(2)
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As for the difference function, this is based on the length of the unmatched
strings that have resulted from the initial matching step. Moreover, we believe
that difference should play a less important role on the computation of the overall
similarity. Our choice was the Hamacher product [18], which is a parametric
triangular norm. This leads us to the following equation:

Diff(s1, s2) =
uLens1 ∗ uLens2

p + (1 − p) ∗ (uLens1 + uLens2 − uLens1 ∗ uLens2)
(3)

where p ∈ [0,∞), and uLens1, uLens2 represent the length of the unmatched
substring from the initial strings s1 and s2 scaled with the string length, respec-
tively. Observer that the parameter p can be adjusted at will giving a different
importance on the difference factor. From experiments we performed we con-
cluded that a value of 0.6 gives very good results. In Fig. 1 a three dimensional
plot of the Hamacher function is illustrated.
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Fig. 1. Hamacher t-norm curve

As it is obvious from (1), our similarity measure takes values from the interval
[−1, 1]. The majority of string metrics found in literature range over [0, 1], but
other metrics that extend this interval can be found, like the Resnik similarity
[19] for taxonomies.

The incorporation of a difference factor to the overall similarity is the key
feature for the satisfiability of the rest of specifications introduced in section 3.
The dissimilarity stretches the range of our similarity metric over the interval
[−1, 1] performing a somewhat “clean-up” of the crucial space between 0.4 to
0.7, where a threshold can range, by discarding highly dissimilar pairs close to
-1. In other string metrics this interval is cramped with false and true positive
values. This fact makes these metrics very sensitive on the choice of the threshold.
Moreover, this stretching makes it less probable to get same values for a string
when it is compared to a large set of other strings, and thus satisfying the
property of discrimination. At last the complexity of our string is polynomial to
the size of the input strings, satisfying the property of a fast metric.
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5 Evaluation

We have conducted two kinds of experiments. The first one is about ontology
alignment, where we used a terminological matcher in order to compare the
various string metrics. The second one is performed with classical benchmarks
found in literature for data integration and retrieval [20].

5.1 Ontology Alignment

The ontology test set used to perform the experiments was that of the EON
ontology alignment contest [21,22]. This test set consists of one reference on-
tology (33 classes, 59 properties, 56 individuals and 20 anonymous individuals),
for a bibliographic domain, to be compared with other ontologies. Most of these
ontologies originate from the reference ontology by making some hand made
changes. These changes were for example the extension, or shrinkage of the on-
tology hierarchy, the use of synonyms, foreign names, removal of class properties
and many more. Most of these modifications are devised in order to evaluate
ontology alignment platforms and algorithms, as a whole, that might use other
ontology features, or external sources like multilingual dictionaries or lexicons
as well and not just terminological matching. Thus from the initial test set we
only used those that involved alternations of the strings of classes and prop-
erties, excluding synonyms, foreign languages and randomly generated strings.
Clearly, such occasions cannot be handled by terminological matching and in-
cluding them would not provide us with valuable results. The evaluation sets we
used are the following:

1. 101: In this test set the reference ontology is compared with itself.
2. 204: In this test the reference ontology is compared with a modified one.

These modifications involved naming conventions like the insertion of under-
scores, abbreviations, upper-cased and lower-cased strings.

3. 301,302,303,304: The reference ontology is compared with four real-life
ontologies for bibliographic references found on the web and left unchanged.

Table 1. Precision and Recall of string metrics for various ontology alignment tests

Test String Metrics

Levenstein Sub-String Jaro-Winkler Monge-Elkan Q-Gram Smith-Waterman Needleman-Wunsch Sim

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.

101 1.0 1.0 1.0 1.0 1.0 1.0 .88 .88 1.0 1.0 .88 .88 1.0 1.0 1.0 1.0

204 .967 .967 .822 .804 .965 .923 .695 .695 .857 .847 .793 .75 .926 .829 .978 .978

301 .8 .786 .872 .786 .81 .557 .833 .737 .872 .786 .511 .754 .857 .786 .9 .786

302 .6 .645 .367 .666 .363 .666 .34 .625 .666 .666 .375 .625 .35 .687 .72 .645

303 .764 .812 .622 .791 .754 .833 .571 .66 .677 .833 .581 .666 .904 .791 .754 .833

304 .972 .947 .8 .96 .923 .947 .776 .776 .972 .947 .789 .789 .972 .947 .972 .947

312 .794 .968 .911 .968 .862 .781 .823 .875 .939 .968 .794 .843 .76 1.0 .911 .968

Pre.=Pecision, Rec.=Recall
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Furthermore, we performed an additional experiment, named 312, aligning the
two ontologies of experiments 301 and 302.

In order to perform the alignment and evaluation experiments we used the
API for ontology alignment introduced by Euzenat [23]. We used the sample
implementations found in the API after performing some slight modifications
on them, in order to include all the metrics and exclude from the alignment
references to external entities. In order to evaluate each metric we have used the
classical measures from the field of information retrieval of precision and recall
[16]. Algorithms to compute precision and recall, given a proposed and a correct
reference alignment, can also be found in the API.

For each metric and for each experiment we were changing the threshold of
the algorithm (the value below which a mapping between strings is discarded) in
order to achieve the highest precision for the highest recall that is possible by a
metric. The reason for giving maximum importance to the recall measure is the
following. Since ontology alignment is likely to stay a semi-automatic process,
human intervention will eventually be needed to complete an alignment. Since
the burden of deleting false identified pairs by a platform is minimal compared
to the burden of traversing two heterogeneous ontologies that might include
thousands of concepts and attributes and identify similar entities, recall is a much
more important measure. Furthermore, the choice of not keeping the threshold
constant is that different metrics have different mathematical properties thus
one optimal threshold for one metric could be a worst for all the others, and vice
versa. The complete set of experiments and the values of precision and recall
using several string metrics is depicted in Table 1, where our metric appears in
the last column.

From Table 1 we can immediately see that the Monge-Elkan and Smith-
Waterman metrics perform worst than any other metric. In experiment 101 we
can see the point made in section 3 about the use of an “one-to-one” map-
ping and the optimistic behavior of some metrics. In all other experiments their
performance is kept in low levels. On the other hand our metric, on average,
performs better compared to the other metrics. It manages to achieve high pre-
cision while retaining recall at high levels. Even in cases where a slightly better
recall was achieved by other measures, the price to pay was a dramatically low
precision, such that in some cases even up to 50 or 40 false positive pairs were
retrieved. For example, Needleman-Wunsch metric achieves a better recall in
experiments 302 and 312 but the precision is so poor that up to 56 and 10 false
negative pairs, respectively, have to be removed later, possibly by human inter-
vention. The same thing happens with Sub-String (Jaro-Winkler) distance, in
experiments 302 and 304 (302), where the price for the slightly better recall are
55 and 18 (56) false positive pairs, respectively.

As we mentioned before, achieving a very high recall is crucial for the process
of creating mappings between ontologies. But at the same time precision must
be kept at high levels since having to discard up to 50 pairs, as it happened in
the experiments when a good recall was achieved for such small ontologies, is
not desired at all. It would be interesting to see in the cases where other metrics
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achieve better recall but substantially lower precision what happens if we drop
recall at the same level as the one achieved by our metric. Even if this happens
most metrics still achieve substantially low precision. More precisely in 302, for
the same recall, Needleman-Wunsch achieves 0.57 precision, Jaro-Winkler 0.607
and Sub-String 0.62. Only Q-Gram achieves 0.775. At last Sub-String, in 304,
achieves the same precision (0.972), and Needleman-Wunsch in experiment 312,
0.861.

In order to give a more intuitive view of the strength of the new metric,
we have computed the precision and recall for each experiment and for each
experiment for nine different threshold values, ranging from 0.1 to 0.9. Then
we computed the average precision and recall of all experiments for all these
different thresholds and we have created an average precision vs. average recall
chart. This can be depicted in Fig. 2. We have excluded from these charts Monge-
Elkan and Smith-Waterman metrics since their performance is very poor when
applied to our field of interest.
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Fig. 2. Average Precision vs. Average Recall values

In Fig. 2 we can immediately see that our metric achieves at the same time a
substantially better precision and recall. While other metrics have scored their
best recall when precision is at a very low levels (and subsequently decrease
recall to increase precision), our metric can simultaneously achieve high values
on both these measures.

Additionally, since curves in Fig. 2 are interpolated, we have put “marks” on
each one of these to denote the points where average precision and average recall
is computed for different threshold values. Concerning our string metric we can
identify an area of seven different threshold values where average precision is
increasing while at the same time average recall still stays at high levels. This is
the area where recall ranges from 0.86 to 0.85 while precision ranges from 0.77
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to 0.88. In all the other curves, after the third or forth threshold value (where
average precision vs. recall is at acceptable levels), we can observe a very high
decrease of recall when a higher threshold is set. In other words the area that
our metric achieves a high recall combined with a very high precision is a highly
unstable area for all the other metrics. If not a highly optimal threshold is set
in an ontology platform that uses such a metric, there is a high risk that low
results are obtained.

In order to give a more clear picture on the stability of our metric, in Fig. 3
we present the number of pairs assigned a particular similarity degree in all six
experiments.
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Fig. 3. Number of pairs assigned a particular similarity values

From Fig. 3 we can immediately deduce that the Needleman-Wunsch and
Jaro-Winkler metrics are highly instable. Notice how many pairs have been ac-
cumulated within a small interval of the similarity degree axis. Clearly a small
variation in the threshold of an alignment platform that uses one of these metrics
could wreck the performance. Moreover, all the other metrics suffer too by a bad
stability. Observe for example the diagram for the Levenstein distance. Within
the interval of [0.4, 0.6] where, according to Fig. 2, average precision vs. average
recall is at its best levels, the metric retrieves 16 true positives and 79 false neg-
atives. As it is obvious a slight disturbance of the threshold might fetch many of
the false pairs or loose many of the correct ones. Sub-String and Q-Gram metrics
are a bit more stable. Sub-String has the interval of (0.4, 0.6] where 8 true and 46
false positives exist (without including 0.4 where 16 more false positives appear).
Q-Gram, on the other hand, ranks 9 true positives and 44 false negatives within
the interval [0.3, 0.5], where obviously the same problem as before exists.
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When it comes to our metric its stability is obvious. The highly dissimilar
pairs have too early been discarded close to -1 and the danger of fetching too
many of them if an optimal threshold is not chosen is very small. Into the interval
[0.5, 0.7], only 4 true positives and 17 false positives appear. Thus, with this
property satisfied we can more easily choose a threshold where the maximum
recall strength of the metric is being used and at the same time not worry if
we are at a point where low precision is encountered. At last observe that in
our case, under the interval where the majority of true positives is present, a
very low number of false positives exist, which justifies the results of the high
precision.

5.2 Census and Field Matching

Even though our metric was originally designed for the domain of ontology align-
ment it still is a string metric in the classical sense. Thus we could not resist
but to evaluate it with classical benchmarks found in literature like the ones in
[7,8,24,20]. The list of the datasets used can be found in Table 2 as well as the
number of strings that each dataset includes.
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Fig. 4. Average Precision of string metrics vs. our metric

Each dataset contains two relations. Each relation contains a number of
strings where each string is compared with all the strings of the other rela-
tion. Each comparison of two strings is assigned a similarity degree. Every entry
for a string contains a key which is purposed for the identification of the cor-
rectness of a pair. In order to evaluate our metric against these datasets we
used the SecondString open-source library [20]. This library contains all these
datasets as well as algorithms to compute the average precision and maximum
F1 measure for each test. The F1 measure is an aggregation of the precision and
recall measures.

In Figs. 4 and 5 we can see two scatter plots. The former is about the average
precision achieved in all experiments by all classical metrics, relative to our
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Table 2. Datasets used in experiments

Name Strings

bird1 377
bird2 982
bird3 98
bird4 719
park 654

restaurant 863
peopleMatch 90

census 841

metric, while the latter one is about the maximum F-measure. As we can see from
these plots our metric performs better in the majority of experiments performed
with the data sets presented in Table 2. Only in five cases in average precision
and equal times in maximum F1 looses with a small difference.
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At last these experiments also gave us results about the complexity of the
metrics. Our metric comes second, very close to the substring metric, with which
has a large resemblance. Both these metrics are far from competition, relative to
time execution, from the other metrics from which perform about 5 to 20 times
faster when it comes to experiments with big strings to be compared.

6 A Sample Implementation

At last, we have started the integration of the similarity metric in an ontology
alignment platform. This way we can test the behavior of our metric when the
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aggregation of more than one methods for computing similarity is involved. The
platform features three kinds of matching methods, as described in [14]. These
are the following:

– Terminological Matching: This method is the standard terminological
method, which computes similarities based on the strings of class and prop-
erty names.

– Structural Internal Matching: In this method we refine the similarity
computed by terminological matching, for two classes, by a portion of the
similarities between the names of their properties.

– Structural External Matching: In this method we again refine the sim-
ilarity between two classes by a portion of the similarity computed for the
superclasses of the two classes.

The similarities computed by the above methods are aggregated to produce an
overall similarity. In this aggregation we give more importance to similarities
computed for class and property names, by the terminological method, and less
importance to the other methods.

Table 3. Precision, Recall and fallout for the experiments

Precision Recall F-Measure

101 1.0 1.0 1.0

201 0.926 0.692 0.792

204 0.989 0.978 0.983

222 0.966 0.945 0.955

223 0.956 0.956 0.956

230 0.962 1.0 0.98

301 0.98 0.79 0.874

302 0.857 0.625 0.722

303 0.816 0.83 0.824

304 0.92 0.90 0.915

312 0.967 0.937 0.95

In order to evaluate the sample implementation we have again used the eval-
uation experiments from [21,22]. Additionally to the experiments used for the
evaluation of the string matching method we have included experiments, 201,
222, 223 and 230. The reader is referred to [22] for a detailed description of the
experiments.

In the following table we can see the precision, recall and f-measure achieved
by the sample ontology alignment platform. In all experiments we have used a
fixed threshold, set at value 0.65.

7 Conclusions

Ontology alignment platforms have been benefited a lot by the use of string dis-
tance metrics in order to discover semantic mappings between ontologies. Though
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powerful metrics exist in literature they have been developed and purposed for
different domains and applications. The delicate and demanding features of the
process of ontology alignment, such as speed, threshold, cardinality, or the poten-
tially short size of ontologies can badly affect the performance of classical metrics
which usually are “optimistic”, to the degrees they assign, or accumulate values
close to one another.

These demanding features has led us to the creation of a new string met-
ric taking extra care to satisfy each one of them. Experiments has shown that
the new metric performs better on average by the classical ones, when opti-
mal configurations are used, and can greatly outperform them when no a priory
knowledge for the alignment task is known. Furthermore, experiments with clas-
sical benchmarks for field and census matching has show that our metric is still
very powerful to be used in such domains and for such tasks, too. At last, all
this interestingly good performance comes with a low complexity.
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