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Abstract. Two novel methods are proposed for robust segmentation of
pulmonary nodules in CT images. The proposed solutions locate and seg-
ment a nodule in a semi-automatic fashion with a marker indicating the
target. The solutions are motivated for handling the difficulty to segment
juxtapleural, or wall-attached, nodules by using only local information
without a global lung segmentation. They are realized as extensions of the
recently proposed robust Gaussian fitting approach. Algorithms based on
i) 3D morphological opening with anisotropic structuring element and ii)
extended mean shift with a Gaussian repelling prior are presented. They
are empirically compared against the robust Gaussian fitting solution by
using a large clinical high-resolution CT dataset. The results show 8%
increase, resulting in 95% correct segmentation rate for the dataset.

1 Introduction

Pulmonary nodule segmentation is one of the major goals of the computer-aided
diagnosis with the chest CT data (chest CAD [1,2,3]). A semi-automatic robust
segmentation solution is required for realizing reliable volumetric measurement
of nodules [4,5], as an integral part of lung cancer screening and management.

Intensity-based segmentation solutions, such as local density maximum algo-
rithm [6], have been successfully applied to the nodule segmentation problem.
Although such solutions can be effective for solitary nodules, they cannot sepa-
rate noduels from juxtaposed surrounding structures, such as walls and vessels,
due to their similar intensity. Recently, to address this issue, more sophisticated
approaches have been proposed to incorporate nodule-specific geometrical con-
straints [7,8]. However, juxtapleural, or wall-attached, nodules still remain as a
challenge because they can grossly violate such geometrical assumption and also
appear frequently in practice. Another source of problem is rib bones which ap-
pear with high intensity values in CT. Such high-intensity regions near a given
marker can bias the semi-automatic nodule center estimator. Robust segmenta-
tion of the juxtapleural cases can be addressed in two approaches: a) global lung
or rib segmentation [6,9,10,11] and b) local non-target removal or avoidance [4].
The former can be effective but also computationally complex and dependent on
the accuracy of the whole-lung segmentation. The latter is more efficient than
the former but more difficult to achieve high performance due to the limited
amount of information available for the non-target structures.
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Addressing the above issue of the juxtapleural cases, this article proposes two
novel 3D nodule segmentation solutions based on the local non-target removal
and avoidance approach. The local analysis-based approach is preferred to the
global one in the semi-automatic CAD context due to its efficiency. The first
solution detects and removes the lung wall region within an input sub-volume
by using 3D binary morphological opening operation. Similar approaches have
been proposed [9,4], however our solution employs data-driven ellipsoidal 3D
structuring element unlike others. The second solution is based on an extended
mean shift framework incorporating a repeller (negative) prior which pushes
the convergence away from a specific data point. This prior-constrained mean
shift is used for correctly detecting the nodule center despite the presence of rib
bones, thereby improving the segmentation accuracy without an explicit removal
of the walls and ribs. Both proposed solutions are realized as extensions of the
robust anisotropic Gaussian fitting solution [8], which is employed for deriving
the ellipsoidal structuring element and the repeller prior.

This article is organized as follows. Section 2 summarizes the robust Gaussian
fitting solution. Section 3 introduces the proposed solutions for handling the
juxtapleural nodules. Section 4 presents the results of our performance validation
with a large clinical CT dataset. Section 5 presents our conclusive remarks.

2 Robust Anisotropic Gaussian Fitting

This section summarizes the robust anisotropic Gaussian fitting algorithms pro-
posed previously as a solution to the semi-automatic (one-click) 3D nodule seg-
mentation problem [8,12]. The one-click segmentation assumes that we are given
a marker xp indicating a rough location of the target nodule. Such marker can
be provided from the radiologist’s readings by eye-appraisal or the outcome of
automatic nodule detection system [13,14]. For computational efficiency, the al-
gorithm is usually applied to a sub-volume V (x) centered at the marker and
extracted from the 12-bit CT volume data I(x) : R3

+ → R+.
The algorithm results in a Gaussian function which fits the local inten-

sity distribution of the target nodule best: I(x) � α × Φ(x;u,Σ)|x∈S where
Φ(x;u,Σ) = |2πΣ|−1/2 exp(−1/2(x−u)tΣ−1(x−u)) is the anisotropic 3D Gaus-
sian function. α is a positive magnitude factor. S is a local neighborhood forming
a basin of attraction of the target. u is the fitted Gaussian mean indicating the
estimated nodule center. Σ is the fitted Gaussian covariance matrix indicating
the nodule’s anisotropic spread. The nodule’s 3D boundary is approximated by
the 35% confidence ellipsoid of the fitted Gaussian, determined empirically.

The algorithm performs a multiscale analysis by considering a Gaussian scale-
space of the input sub-volume. The Gaussian scale-space L(x; h) is a solution
of the diffusion equation ∂hL = 1

2∇2L with an initialization L(x; 0) = I(x).
Such a scale-space is defined by a convolution of I(x) with a Gaussian kernel
KH(x) with a bandwidth matrix H: L(x; h) = I(x) ∗ KH(x;H = hI). The
algorithm considers a Gaussian scale-space constructed over a set of densely
sampled discrete analysis scales {hk|k = 1, .., K}. At each analysis scale, a fixed-
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scale robust analysis is performed for fitting an anisotropic Gaussian function
in each scale space image. Given a set of estimated Gaussians, the most stable
estimate across the scales determines the final outcome.

The fixed-scale analysis performs a robust Gaussian fitting with scale-space
mean shift, a convergent weighted mean shift defined in the Gaussian scale-space,

m(x;Hk) =
∫

x′KH(x − x′;Hk)I(x′)dx′
∫

KH(x − x′;Hk)I(x′)dx′ − x = hk
∇L(x; hk)
L(x; hk)

(1)

Gaussian mean u as the nodule center is estimated by the convergence of the
majority of initial seeds sampled around xp. A set of new seeds are sampled
around the estimated mean u. The mean shift procedures are then performed
from each seed. Gaussian covariance is estimated by a constrained least-squares
solution of a linear system with unknown Σ, constructed with mean shift vectors
only along the convergent trajectories. The linear system can also be constructed
with the response-normalized scale-space Hessian [12].

The multiscale analysis, given a set of Gaussians estimated at the analysis
scales {(uk,Σk)}, is realized by finding the most stable estimate among others
using a divergence-based stability test. For this purpose, the algorithm employs
the Jensen Shannon divergence (JSD) of three neighboring Gaussians computed
at each analysis scale. Assuming the normal form of distributions, JSD can be
expressed in the following simple form [15],

JSD(k) =
1
2

log
|13

∑k+1
i=k−1 Σi|

3

√∏k+1
i=k−1 |Σi|

+
1
2

k+1∑

i=k−1

(ui − u)t(
k+1∑

i=k−1

Σi)−1(ui − u) (2)

where u = 1
2

∑k+1
k−1 ui. The minimization of a JSD profile across the scales hk

results in the most-stable-over-scales estimate (u∗,Σ∗) [12].
The robustness is due to two aspects of this algorithm. First, the fixed-scale

Gaussian fitting solution performs robust model fitting with the outlier removal
using the scale-space mean shift convergence analysis. This helps to mitigate the
problem of juxtaposed neighboring structures. Second, the usage of the stability-
based scale selection robustifies the fitting process even for intensity distributions
that do not follow the Gaussian assumption well. This facilitates the effectiveness
of the solution for segmenting clinically significant but technically challenging
ground-glass nodules [8,16].

3 Segmentation for Juxtapleural Cases

Two proposed solutions described below extends the above robust Gaussian
fitting solution for handling not only the solitary but also the juxtapleural cases.
Both solutions first execute the robust Gaussian fitting. The resulting fitted
Gaussian undergoes a goodness-of-fit test, analyzing chi-square errors between
the data and fitted model, as well as a linear DC bias [8]. Only when the initial
fitting results fail to pass the test, either of the following two solutions is invoked.
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Our pilot study resulted in following two empirical observations. First, the
most of gross segmentation failures which can be detected by the goodness-of-fit
test are due to the juxtapleural cases. Second, the initial fitted Gaussians for
such failures tend to approximate the wall and rib structures. Exploiting these
observations, we develop the segmentation solutions which employ the initial
fitted Gaussian as an input to their process.

3.1 Wall Removal by 3D Morphological Opening

The input sub-volumes of the juxtapleural failure cases contain lung wall regions.
Such wall regions appear typically as a large connected region with CT values
higher than surrounding pulmonary parenchyma. The juxtapleural nodule will
appear as a nodular structure partially embedded into the wall. The first solution
explicitly removes the wall regions from the sub-volume using the morphological
operation. Then the robust Gaussian fit is performed again on the wall-removed
data, resulting in an improved segmentation of the target nodule. The algorithm
consists of the following steps.

Wall Removal: Given the input (V (x),xp) and a fitted Gaussian (u∗,Σ∗) fail-
ing the goodness-of-fit test, remove wall regions in V (x), resulting in Vr(x).
1. Binarize the input sub-volume V (x) with an intensity threshold th1,

resulting in a binarized sub-volume Bo(x).
2. Compute the average diameter dave of the ellipsoid defined by Σ∗.
3. Initialize a 3D structuring element: E = Σ∗ if dave > th2, otherwise E

is set to a 3D ball with a fixed radius rb.
4. Perform 3D binary morphological opening, resulting in smoothed volume

Bs(x) retaining only the large wall region: Bs(x) = [Bo(x) � E] ⊕ E.
5. Perform a wall removal by masking V (x) with the negative of Bs(x):

Vr(x) = V (x) × NOT[Bs(x)]
Nodule Segmentation: Perform the robust Gaussian fitting algorithm on Vr(x)

with xp, providing an improved nodule segmentation (uwr,Σwr).

(a)
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Fig. 1. Examples of the 3D morphological opening results shown in 2D cross-section
images. From left to right column: input sub-volume V (x), binarized sub-volume Bo(x),
smoothed sub-volume Bs(x), wall-removed sub-volume Vr(x).
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This algorithm utilizes a data-dependent ellipsoidal structuring element es-
timated for each data unlike the similar approach with a disc-like element [7].
Our experimental results later show that this algorithm effectively reduces the
segmentation failures due to the juxtapleural cases. Figure 1 illustrates some ex-
amples of the morphological opening applied to the real CT data. It shows that
the operation effectively removes the walls with large (1a), small (1b), heavily-
embedded (1c), and irregular (1d) nodules. Note that this was achieved without
using a set of structuring elements of different sizes.

3.2 Mean Shift Constrained by Gaussian Repelling Prior

The second solution is proposed for detecting the nodule center correctly without
an explicit removal of the walls and ribs despite the presence of rib bones.

The prior-constrained mean shift incorporates a spatial prior information to
the data-driven mean shift analysis. Suppose that the robust Gaussian fitting is
performed on the sub-volume V (x), resulting in the nodule center and spread
estimate (u∗,Σ∗). This fitted Gaussian can be interpreted as the normal proba-
bility distribution Q(x) indicating a likelihood of x being the estimated center,

Q(x) = N (x;u∗,Σ∗) = |2πΣ∗|−1/2 exp(−1
2
(x − u∗)tΣ∗−1(x − u∗)) (3)

Suppose next that this estimate failed the goodness-of-fit test. This indicates
that the estimated location u∗ is not at the center of the target nodule and
that the estimated spread Σ∗ roughly expresses the extent of the (rib/wall)
structure which falsely attracted the mean shift convergence away from the true
nodule center. Our main idea here is to re-estimate the nodule center with the
constrained mean shift whose convergence is biased by the knowledge of Q(x)
so as to pushes the convergence away from the failed estimate u∗.

To incorporate such a repelling (negative) prior, we consider resampling, or
associating weights to, available data I(x) to denote the notion that some data
points are more likely to occur than others. We define such prior-induced positive
weights by a negative of Q(x),

wQ(x) = 1 − |2πΣ∗|1/2Q(x) (4)

Incorporating the negative prior leads to the following resampled scale-space
L̃(x; h) expressed in the discretized data space,

L̃(x; h) =
N∑

i=1

wQ(xi)I(xi)Kh(x − xi) (5)

We call the mean shift mr(x; h, Q) that is convergent to a mode in L̃(x; h)
negative prior-constrained scale-space mean shift. It is defined by,

mr(x; h, Q) =
∑

i xiKh(x − xi)I(xi)wQ(xi)∑
i Kh(x − xi)I(xi)wQ(xi)

− x (6)
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Its convergence property is maintained because wQ(xi) ≥ 0 ∀xi.
A new Gaussian fitting solution is constructed by replacing the original scale-

space mean shift (1) by this prior-constrained mean shift (6) in the robust fitting
algorithm described in Section 2. Given an initial Gaussian (u∗,Σ∗) failing the
goodness-of-fit test, this new solution with mr(x; h, Q) is executed on the original
data V (x), resulting in an improved segmentation with (ums,Σms).

4 Experimental Results

We compare the segmentation results of the two proposed methods against the
baseline robust Gaussian fitting solution. We use a clinical HRCT dataset, con-
sisting of 39 patients with 1312 nodules whose size ranges from 1 mm to 30 mm
in diameter. The markers are provided by certified radiologists’ eye-appraisal.

Table 1. Segmentation performance of the robust Gaussian fitting solution. GOF: the
goodness-of-fit test. TP: accepted correct estimates. FN: rejected correct estimates.
TN: rejected false estimates. FP: accepted false estimates.

Classif. # Cases (%) GOF # Cases (%)

Correct 1156 (88.1) TP 1095 (83.5)
FN 61 (4.6)

Failure 156 (11.9) TN 123 (9.4)
FP 33 (2.5)

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

(a) (b) (c) (d) (e) (f)

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

(g) (h) (i) (j) (k) (l)

Fig. 2. Twelve examples of the 3D nodule segmentation results. 1st and 4th rows:
(u∗,Σ∗) by the robust Gaussian fitting of Section 2, 2nd and 5th rows: (uwr, Σwr)
by the morphological opening of Section 3.1, 3rd and 6th rows: (ums, Σms) by the
prior-constrained mean shift of Section 3.2.
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V (x) is set to 33x33x33 in voxels centered at the markers. The correct/failure
classification of the segmentation results are given by the agreement of experts by
eye-appraisal. The implementation of the systems follows the parameter settings
in [8] with an additional 2-layer Gaussian pyramid for handling larger nodules.
For the morphological opening, we set th1 = 500 for the normalized intensity
I(x) ∈ [0, 4095], rb = 14, and th2 = 16.6 in voxels, determined empirically. The
prior-constrained mean shift does not have a free parameters to be tuned.

Table 1 summarizes the quantitative performance of the segmentation by the
baseline robust Gaussian fitting solution. Together with the goodness-of-fit test,
88.1% and 9.4% resulted as true positives (TP) and negatives (TN). Among the
123 true negative cases, 108 were visually confirmed to be juxtapleural cases.
The proposed nodule segmentation systems are tested with the 123 TN cases.

Figure 2 shows some illustrative examples. Both methods successfully seg-
mented the difficult juxtapleural cases that failed initially: large (2a-b), irregular
(2c-d), and heavily-embedded (2e-h). The morphological opening-based solution
(WallRemove: WR) segmented the small nodules better than the negative prior-
constrained mean shift solution (MeanShift: MS) as shown in (2i-l). Incorporat-
ing more negative priors in MS by iterating the whole procedure can improve
some failure cases that are surrounded by multiple distractors (2l).

The quantitative performance comparison is summarized in table 2. The
results indicate that WR (71.5%) performs better than MS (34.1%), especially
for the small juxtapleural cases. WR thus improves the overall segmentation
performance from 88.1% to 94.8%. Although MS’s improvement was much lower
than that of WR, there are some cases in which MS performs better than WR,
as shown in Figure 3. When the nodules are attached to, or influenced by, non-

Table 2. Quantitative comparison of the two proposed segmentation solutions

Classif. MeanShift WallRemove
Correct 42 (34.1) 88 (71.5)
Failure 81 (65.9) 35 (28.5)

Tot. Corr. 1198 (91.3) 1239 (94.8)
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Fig. 3. Four example cases where the prior-constrained mean shift-based solution
works better than the solution with wall removal using the morphological opening.
From top to bottom row: initial fitted Gaussian (u∗,Σ∗), after morphological opening
(uwr,Σwr), with prior-constrained mean shift (ums,Σms).
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wall structures (3a-c), the morphological opening cannot be effective thus MS
performs better. There are also several cases where a very large nodule was
attached to a thin part of lung wall (3d). Such a case will result in over-estimation
of the structuring element thus a failure of the wall removal.

5 Conclusions

We proposed two novel 3D nodule segmentation solutions which improve per-
formance for the difficult juxtapleural cases. The morphological opening-based
(WR) and prior-constrained mean shift-based (MS) solutions, extended from the
robust Gaussian fitting approach, are evaluated with a large clinical CT dataset.
The validation results show that i) they can effectively segment the juxtapleural
cases, ii) WR performs better than MS for the small juxtapleural cases, and
iii) MS performs better than WR for the cases attached to non-wall structures.
Toward our goal of the volumetric measurement of nodules, the accuracy by
our methods is limited due to the ellipsoidal boundary approximation. However,
further improvement of segmentation quality is possible by incorporating a non-
parametric segmentation with a Gaussian prior derived by using the proposed
methods [17]. Developing such an accurate non-parametric system together with
the proposed solutions remains our future work.
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