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Abstract. Statistical shape analysis has become of increasing interest
to the neuroimaging community due to its potential to locate morpholog-
ical changes. In this paper, we present the a novel combination of shape
analysis and Diffusion Tensor Image (DTI) Tractography to the compu-
tation of a probabilistic, model based corpus callosum (CC) subdivision.
The probabilistic subdivision is based on the distances of arc-length pa-
rameterized corpus callosum contour points to trans-callosal DTI fibers
associated with an automatic lobe subdivision. Our proposed subdivision
method is automatic and reproducible. Its results are more stable than
the Witelson subdivision scheme or other commonly applied schemes
based on the CC bounding box. We present the application of our sub-
division method to a small scale study of regional CC area growth in
healthy subjects from age 2 to 4 years.

1 Introduction

Quantitative morphologic assessment of individual brain structures is often based
on global volume and area measurements, which are intuitive features as they
may explain atrophy or dilation due to illness. On the other hand, structural
changes at specific locations are not sufficiently reflected in volume and area
measurements. Shape analysis has thus become of increasing interest to the
neuroimaging community. In this paper, shape analysis is employed to compute
a probabilistic subdivision model of the Corpus Callosum(CC).

The corpus callosum is the major commisural pathway between the hemi-
spheres and plays an integral role in relaying sensory, motor and cognitive infor-
mation from homologous region in the two hemispheres. It has been a structure
of much interest in neuroimaging studies of normal development [1], schizophre-
nia [2], autism, bipolar and unipolar disorder. In-vivo assessment of the com-
misural pathways through the CC is difficult, but can be approximated using
Diffusion Tensor Imaging (DTI) and Tractography [3,4,5] (see Figure 1).

The computation of regional volumes and areas based on subdivision schemes
of anatomical structures is quite common in neuroimaging. Most common sub-
division protocols are executed manually by relabeling an already segmented

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 765–772, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



766 M.A. Styner et al.

Fig. 1. Left: Visualization of interhemispheric, trans-callosal DTI Fibers. Middle: Re-
sult of an automatic lobe subdivision. Right: Schematic subdivision based on neuro-
histological studies [6].

structure into subregions. These methods are time-consuming, not reproducible
and subjective. Further, they are often based on the structure’s bounding box
and are thus likely to mix different parts of the structure into the same subdi-
vision due to the non-convex shape of most anatomical structures. Subdivision
schemes can also be categorized into hard and probabilistic subdivisions. A hard
subdivision assigns a single regional label for every image element. A proba-
bilistic subdivision on the other hand assigns multiple labels with individual
probabilistic weights for each element.

The currently most widely applied subdivision scheme for the CC was orig-
inally proposed by Witelson [6] and is motivated by neurohistological studies.
It has been adapted in many studies [7,2]. The Witelson based subdivisions use
somewhat arbitrarily defined hard subdivision boundaries and is often still ap-
plied manually, even though automatic and probabilistic methods exist[8]. To
our knowledge probabilistic subdivision methods in combination with fiber con-
nectivity information have not been proposed before.

In this paper we propose a novel model based probabilistic subdivision scheme
of the CC. The subdivision model described in section 2.1 is computed as the av-
erage model of a training population of automatic cortical lobe subdivisions prop-
agated via inter-hemispheric, trans-callosal DTI fibers. The subdivision model
is then applied to a small study of CC area growth in healthy children.

2 Methods

Subjects and Image Acquisition: There are 2 mutually exclusive sets of sub-
jects used in this paper: one for the computation of the subdivision model and one
for the small study on normal growth. The subdivision model was built from 5
different subjects of a larger database of healthy (2 cases), autistic (2) and devel-
opmentally delayed children (1) at age of 2 years (2) and 4 years (3). The growth
study was computed on 3 additional healthy subjects with scans at age 2 and
age 4. All subjects were scanned on the same GE 1.5 Tesla Sigma Advantage MR
system. The structural MRI (sMRI) dataset was acquired using a 3D IR Prepped
SPGR protocol with a 256x256x124 image matrix at 0.9375x0.9375x1.5mm res-
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olution. The DTI dataset was acquired using a 12 direction, 4 repetition DTI
sequence with a 128x128x30 image matrix at 1.875x1.875x4.2mm resolution.

Corpus Callosum Segmentation: Our automatic segmentation of the CC
from the sMRI data is an extension of Kelemen’s 2D Fourier descriptor based
Active Shape Model [9]. The shape model is described with complex Fourier de-
scriptors up to degree 11. It was derived from a large, mixed population of adult
controls, schizophrenics, pediatric controls and autistics. Based on a prior auto-
matic tissue segmentation [10] the initial values for position, scale and grayscale
normalization were computed automatically. From these initial values, the CC
segmentation is performed in 2 steps: first within a larger search region (6 mm
along each profile) using a fully constrained model deformation, then secondly
within a small search region (1 mm along each profile) using an unconstrained
deformation. Each step is computed until convergence. We applied this method
so far to over 150 pediatric cases with less than 2% cases that needed manual
interaction in the segmentation process.

Correspondence via Fourier Descriptors (arc-length parametrization):
The segmentation procedure yields Fourier coefficients with an inherent corre-
spondence based on its arc-length parametrization. The start-point for the arc-
length parametrization is given by the first order ellipse. The fourier descriptor
were then uniformly sampled into a single polygon curve (100 points, spacing
along curve is about 0.75mm).

Alignment and Scale: Alignment of the CC contours is achieved using the
Procrustes[11] alignment method without scaling. We chose the iteratively com-
puted average CC as the template of the Procrustes alignment. In the longi-
tudinal study presented in this paper the CC contours were analyzed in their
original scale and thus no scaling normalization was performed.

Model based subdivision: Our novel CC subdivision method is based on a
prior subdivision model (described below in section 2.1). The subdivision model
consists of 4 probabilistic maps that assign to each contour point C(x) the
probabilities pi(x) to belong to any of the 4 connectivity based subdivisions
Si. These probabilities are assigned to the contour points of each individual CC
contour using the contour correspondence of the Fourier Descriptors. Our model
subdivides thus not the full cross-section of the CC, but rather only its contour.
The subdivision probabilities for the whole CC cross section are determined
by closest point correspondence to the contour. This closest point operation
results in the probabilistic area maps for the CC cross-section(see Figure 4).
From the probabilistic area maps, the area values of the 4 regions are computed
by simple summation. The computation of these probabilistic areas is automatic
and reproducible.

2.1 Subdivision Model

The subdivision model was built from 5 pediatric cases combining fiber tract
information from DTI data, and cortical lobe subdivision and shape informa-
tion from T1w sMRI data. In summary we first compute for each case its lobe
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subdivision and the CC segmentation. Then the lobe subdivision is used for
the computation of the interhemispheric lobar DTI fiber tracts. The next step
computes a distance-weighted probabilistic subdivision of each case’s CC con-
tour from the location of all tracts. The resulting probabilistic subdivisions are
averaged to produce the final CC subdivision model.

During several steps of the model computation, the results of the previous
steps is transformed from DTI to sMRI coordinate space or vice-versa. This
transformation was computed using a fully affine registration of the sMRI image
to the B0 DTI image based on normalized mutual information [12].

In the first step of the model computation, we employ a fluid registration [13]
to propagate the lobe parcellation from a single template to all sMRI images.
The lobe subdivisions were then controlled by experts. Only in few cases manual
corrections are necessary. The result of the lobe subdivision is a set of separate
left and right hemispheric lobes: frontal, parietal, occipital and temporal lobe.
As a next step, the CC is segmented using the Fourier Descriptor Active Shape
Model.

The lobe subdivision and the CC segmentation serve as automatic selection
regions for the source (lobes) and target (CC) of the DTI fiber tract compu-
tation. This results in 4 sets of fibers that originate in each of the lobes, pass
through the CC and end up in the corresponding lobe of the other hemisphere.
The fibers from the occipital and temporal lobes are joined as their fiber tracts
are highly overlapping. The limiting factor for a higher degree of lobar subdi-
vision is the moderate resolution of the DTI datasets employed in this study.
The fibers of the frontal lobe are further subdivided using an interactive 3D
DTI tract clustering and manipulation tool called FiberViewer, which was de-
veloped at our lab. This fiber subdivision creates two fiber sets, one with fibers
that are anteriorly oriented (anterior-frontal fibers) and one with fibers that are
superiorly oriented (posterior-frontal fibers). A reconstruction of the 4 sets of
fibers computed for a sample case is visualized in Figure 2. The fiber sets are
quite overlapping and thus we chose to describe the model as a probabilistic
subdivision, which is clearly better suited than a hard subdivision.

Fig. 2. Subdivision model computation. Left: Reconstruction of the fiber sets associ-
ated with each lobe in DTI coordinate space. Middle: Schematic visualization of the
probability computation. Right: Sample CC contour probability map plotting disks of
radii relative to the corresponding probability at each contour point.
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The 4 probabilistic subdivisions pi(x) of the CC contour are computed using
the closest distances di(x) = dist(C(x), f(i)) of every contour point C(x) to the
reconstructed 4 fiber sets f(i): pi(x) = (maxdist−d2

i (x))/
∑4

i=0(maxdist−d2
i (x))

where maxdist represents the maximal possible distance predetermined at the
average length of the CC. The computation of the probabilities is schematically
shown in Figure 2 along with the result of the probabilistic contour subdivision of
a sample case. The contour subdivision is shown for each lobe separately plotting
at each CC contour point disks with radii relative to the corresponding probabil-
ity. The final probabilistic subdivision model is computed by linearly averaging
the probabilities for each CC contour point across the training population.

3 Results

Probabilistic CC subdivision model: The contour probability maps of all 5
cases in the training population show a high similarity across all cases (see Figure
3A) and so does the final subdivision model(see Figure 3C). The largest variabil-

A: Probability maps B: Hard decision maps

C: Average Model D: Average Model without Case4

Fig. 3. Results of the subdivision model computation. A: Contour probability maps
for all training cases. B: Hard decision maps for 2 selected training cases(cyan:anterior-
frontal, purple:posterior-frontal, brown:parietal, red:occipital-temporal lobe). C: Prob-
abilistic and hard decision map of the final subdivision model. D: Probabilistic and
hard decision map of the subdivision model excluding a single training case.
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Fig. 4. Probabilistic area maps for a sample case. Each region is annotated with the
respective probabilistic area percentage relative to the overall area.

A B

Fig. 5. Relative growth curves of CC subdivision regions. Data from 3 healthy subjects
along mean curves from age 2 to age 4. A: Regional growth relative to the overall CC
growth. B: Regional growth relative to the size of the corresponding region at age 2.

ity seems to be present in the occipital-temporal lobe section. Alternatively to
the probability maps, we also computed the hard decision maps by associating
each contour point with a single region based on the highest probability. The
high decision variability between the 2 selected cases shown in Figure 3B clearly
illustrates the main drawback of a hard decision map for the training cases. A
similarly high variability is also present in a single leave-one-out experiment of
a hard subdivision model computed from the final probability maps as shown in
Figures 3C and D.

The result of the final subdivision model applied to a sample CC contour
is shown in Figure 4. The occipital-temporal lobe region clearly shows a low
probability in a relatively large region, which remains low even in the posterior-
most sections of the CC. The resulting probabilistic area is relatively large (21%
for the shown sample case). In contrast, a hard decision model as illustrated
in Figures 3C would compute a much lower area value and would thus highly
underestimate the CC area associated with the occiptal-temporal lobe fibers.

Application of the model to a study of CC growth: In order to illustrate
the potential of the subdivision model, we applied it to a small study of CC
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growth in 3 healthy children of age 2 to 4. We applied the model after CC seg-
mentation and computed the probabilistic area sum for the 4 regions. Figure 5
shows the resulting regional area growth A) relative to the overall CC growth
and B) relative to the regional area of corresponding CC region at age 2. The
first shows the largest growth in the posterior-frontal lobe region and the small-
est growth in the anterior-frontal lobe region. As the posterior-frontal region is
overall the largest region and the anterior-frontal region is the smallest region,
this growth curve plot can be misleading. The second plot captures the local
growth more intuitively, as it shows the regional growth relative to the overall
regional size. In this plot one can clearly see that the main growth is happening
in the frontal lobe regions with the anterior-frontal lobe region experiencing the
largest relative growth from age 2 to age 4 at 26%.

4 Discussion and Conclusion

We present in this paper a novel method for the computation of a probabilistic
subdivision model of an anatomical structure. The subdivision is not based on
commonly applied arbitrarily subdivision boundaries based on the bounding
box. Rather the subdivision is computed from probabilistic maps based on the
distance to trans-callosal DTI fibers associated with a lobe subdivision.

Even though our CC subdivision model is based directly on DTI fiber connec-
tivity information, the individual CC subdivisions are based on the geometric
correspondence of the boundary to the subdivision model. On one hand, this
scheme allows us to apply the subdivision model to retrospective CC data that
lack an appropriate DTI dataset. On the other, if an appropriate DTI dataset is
given, then we could directly compute the subdivision from the DTI fibers. For
our present clinical studies either without DTI data or only with low-resolution
DTI data the choice of a probabilistic subdivision model is the optimal method.
In our future studies we are planning to recompute this subdivision model for a
higher resolution data and investigate the direct computation of the CC subdi-
vision from the DTI fibers.

The regions in our subdivision model are quite similar to those of the Wi-
telson subdivision model [6], which is motivated by neurohistological studies. In
contrast to the Witelson method is more stable due to the probabilistic nature of
the subdivision and has been directly computed from connectivity information.

We are currently using the subdivision model to study regional CC growth
in a large neurodevelopmental study of autistic, developmentally delayed and
healthy subjects from age 2 to 4. For a subset of this study additional relatively
low-resolution DTI data is also available and we plan to use the model to study
regional histograms of DTI properties such as Geodesic Anisotropy. We further
plan to employ the model for the computation of regionally cumulative shape
measurements, such as the mean distance between the mean contours of two
populations in every CC subdivision region.

The results of the small scale study of callosal growth from year 2 to 4 is quite
preliminary due to the low number of subjects. The high similarity of the results



772 M.A. Styner et al.

in all cases is though suggesting that the frontal lobe regions experience a larger
growth than those of the posterior lobes in that stage of healthy development.
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