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Abstract. While geometric deformable models have brought tremen-
dous impacts on shape representation and analysis in medical image anal-
ysis, some of the remaining problems include the handling of boundary
leakage and the lack of global understanding of boundaries. We present
a modification to the geodesic active contour framework such that influ-
ence from local neighbors of a front point is explicitly incorporated, and
it is thus capable of robustly dealing with the boundary leakage problem.
The fundamental power of this strategy rests with the local integration
of evolution forces for each front point within its local influence domain,
which is adaptively determined by the local level set geometry and im-
age/prior information. Due to the combined effects of internal and exter-
nal constraints on a point and the interactions with those of its neighbors,
our method allows stable boundary detection when the edge information
is noisy and possibly discontinuous (e.g. gaps in the boundaries) while
maintaining the abilities to handle topological changes, thanks to the
level set implementation. The algorithm has been implemented using
the meshfree particle domain representation, and experimental results
on synthetic and real images demonstrate its superior performance.

1 Introduction

Shape recovery has been one of the most active research areas in medical im-
age analysis because of its practical importance and theoretical challenges. Over
the last two decades, various parametric and geometric deformable models have
gained much popularity [4,7]. Geodesic active contours have been proposed [1] to
connect classical parametric snakes based on energy minimization to geometric
active contours based on the theory of curve evolution [8], and thus maintain
the desirable properties of allowing topological changes during the curve evolu-
tion process. Nevertheless, these geometric snakes still have certain drawbacks,
i.e. they face difficulties in handling weak edges/gap problems [1,10] where the
evolving contour cannot stick to the object boundary and would simply leak
through the gaps, they are very sensitive to local minima in noisy images [11].

In order to overcome these problems, considerable progress has already been
made through the use of additional force (or energy) terms. An extra stopping

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 741–748, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



742 H. Liu et al.

Fig. 1. 1st: adaptive point-based domain representation; 2nd: influence domain (and
the associated other points) of the red point; 3rd: closeup which illustrates the genera-
tion of neighboring points in the tangent direction (we generate the points pn through
xpn = xp(n−1) + tscale

|κ| t, with κ the curvature and t the tangent vector of point p(n−1));
4th: generated neighboring points in both normal and tangent directions (and thus the
influence domain) for the red point.

term for pulling back the contour if it passes the boundary was investigated in
[1], although this formulation is still susceptible to boundary leakage problem.
A weighted area functional force has been introduced to help the snake be more
robust with respect to small gap problem [10]. Diffused external data forces,
such as the gradient vector flow (GVF), have also been adopted to deal with
the leakage problem and noisy data [12]. And boundary and region information
has been integrated under a curve-based minimization framework [9]. These
later approaches own the benefits provided by external force potential field in
achieving a larger capture range and robustness against the boundary leakage
problem [9,12]. More recently, a region-aided geometric snake, which integrates
gradient flow forces with region vector flow forces obtained through the diffusion
of the region segmentation map, has been developed and implemented within
level set platform [11]. These integrated forces give another way to be more
robust toward weak edges. Similar region-based strategies have been explored
by other works as well [2].

We realize that the boundary leakage problem can be more readily solved if
the behavior of individual curve point is constrained by local edge information
of itself and that of its neighboring points. These inter-point relationships act as
diffused local internal energy, which would make the snakes less sensitive to noisy
or broken edges. Thus, our aim is to develop a robust segmentation framework
that imposes adaptive local inter-point constraints into geodesic active contours.
Instead of using additional external forces, we make use of the image data at
the adaptively determined local support domain around each point of interest,
which effectively enlarges the capture range of each point to have a better local
understanding of the image information within its local neighborhood. In other
words, we modify the image forces on each point of the geodesic contour in a
way such that it is capable of providing sufficient information to define a desired
segmentation which is robust against boundary leakage and noise impact. One
key issue is the proper determination of the local neighborhood of each curve
point such that the integration of information can be performed. In this paper,
we present a numerical implementation of the strategy on the meshfree particle
representation of the evolution domain, where the local neighbor is adaptively
selected based on image data and curve geometry.
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2 Methodology

2.1 Geodesic Active Contours (GACs)

Let us consider an active contour C(s) parameterized by s ∈ [0, 1]. It has been
known that the problem of boundary detection can be casted into the problem of
minimizing the curve length in Riemannian space min

∫ 1
0 g(|�I(C(s))|)|C′(s)|ds,

where g(.) is a strictly decreasing edge-function such that g(0) = 1 and limx−>∞
g(x) = 0 [1]. Now we represent the evolving contour C implicitly as the zero level
set of a scalar Lipschitz function φ: C(t) = {x|φ(x, t) = 0}. The corresponding
energy over the image domain Ω in terms of level set function φ becomes:

E(φ) =
∫

Ω

g(| � I(x)|)| � H(φ(x))|dx (1)

where H(x) is the Heaviside function, that is H(x) = 1 if x >= 0, and H(x) = 0
if x < 0, and let δε(x) = H ′(x) be the Dirac measure. Then, the length of zero
level set is given by

∫
Ω

| � H(φ(x))| =
∫

Ω
δε(φ)| � φ(x)|. The energy can be

rewritten:

E(φ) =
∫

Ω

δε(φ)g(| � I(x)|)| � φ(x)|dx (2)

The minimization process can be achieved by solving the Euler-Lagrange
equation, obtained by minimizing Eqn. (2) with respect to φ and parameterizing
the descent directions by an artificial time t:

∂φ

∂t
= δε(φ)div

(

g(| � I(x)|) �φ

| � φ|

)

(3)

We reach the following equations by expanding the divergence term and
replacing δε(φ) by �φ [13]:

∂φ

∂t
= g(| � I(x)|)| � φ|div

(
�φ

| � φ|

)

+ �g(| � I(x)|). � φ (4)

where �φ
|�φ| denotes the unit normal vector. The divergence of the unit normal

vector div
(

�φ
|�φ|

)
represents the curvature of the current point.

2.2 GACs with Adaptive Neighboring Influence (GAC-ANI)

The main idea in the GAC-ANI formulation is that centered at each front point,
there is an influence domain Ωe which contains points that have effects on the
evolution of the concerned front point. Hence, each front point moves under
the influence of two forces: the typical data force provided by image informa-
tion such as GVF, and the neighborhood force due to the interaction of the
point with other points in the influence domain. With proper formulation of the
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neighboring interactions, front points at the weak edges or gaps will be domi-
nated by the neighborhood force such that the front would be discouraged from
leaking through the boundary. For front points with good data force, their move-
ment is still mostly controlled by image information and thus would stick to the
object boundary exhibited in the image. Due to the combined effects of data
constraints and interactions with the neighboring points, GAC-ANI exhibits ro-
bustness against boundary leakage while maintaining the desired geometrical
characteristics of GACs.

While there could be many ways to incorporate the inter-point relationship
into the GAC-ANI formulation, one simple way of enforcing neighborhood influ-
ence is to replace the edge function g(x) in Equation (2) by G(x) =

∫
Ωe

Ng(y)dy,
where N is a shape function that assigns proper weights to each point within the
influence domain. In this sense, the evolution force on point x is now constrained
by the image data at the point itself and at the other points within its influence
domain. The modified objective function of GAC-ANI now becomes:

E(φ) =
∫

Ω

δε(φ)
(∫

Ωe

Ng(y)dy

)

| � φ(x)|dx =
∫

Ω

δε(φ)G(x)| � φ(x)|dx (5)

The evolution equation related to the Euler-Lagrange equation for Eqn. (5) is:

d

dτ
E(φ + τΦ)|τ=0 = 0 (6)

Now, let us take care of the left hand side of the equation:

d

dτ

∫

Ω

δε(φ + τΦ)G(x)| � φ + τ � Φ|dx = −
∫

Ω

δε(φ)div

(

G(x)
�φ

| � φ|

)

Φdx(7)

Finally, the following Euler-Lagrange equation can be achieved:

δε(φ)div

(

G(x)
�φ

| � φ|

)

= 0 (8)

It is common to expand the divergence term to obtain the alternative equation:

δε(φ)G(x)div

(
�φ

| � φ|

)

+ δε(φ) � G(x).
�φ

| � φ| = 0 (9)

where �G =
∫

Ωe
�Ng(y)dy. The steady state solution of the above equation

results in the GAC-ANI formulation in level set representation, where a standard
rescaling can be made through replacing δε(φ) by | � φ| [13]:

∂φ

∂t
= G(x)| � φ|div

(
�φ

| � φ|

)

+ �G(x). � φ (10)
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Discussions. It should be noted that the most attractive property of the above
GAC-ANI formulation is that the influence domain Ωe controls the trade-off
between a parametric snake and a geodesic snake at the front point.

Consider the case where the size of the local influence domain is approaching
zero, e.g. the level set value of the point is mainly determined by itself. Hence,
Eqn. (10) goes back to the standard geodesic active contours. On the other hand,
if we enlarge the influence domain to cover the entire curve, the integration is
then taken over the whole contour. Perceptually, the behavior of all curve points
are now inter-related, and we effectively have a parametric deformable model
instead. In practice, influence domains of different sizes generate different G
and �G, which in turn are suitable for different situations. For example, large
influence domains are effective in robust segmentation of noisy images or object
with broken edges. On the other hand, small influence domains are needed for
object boundaries with many fine details. Schemes to adaptively determine the
sizes of the influence domains will be discussed in the following section.

2.3 Numerical Implementations of GAC-ANI

We have implemented the GAC-ANI on the evolution domain represented by
adaptively distributed meshfree particles [3]. Here, we want to point out that
any numerical implementations such as traditional finite difference schemes can
also be used for GAC-ANI without any fundamental algorithmic modifications.

Let φ(x, t = 0) = ±d, where ±d is the signed distance to the interface. The
level set updating procedures on the meshfree particle domain are:

1. Initialization: Initialize φ(·, 0) to be the signed distance function.
2. Domain Representation: We adopt an adaptive point distribution scheme

to represent the domain by meshfree particles (see Fig. 1 for an example).
The point distribution is adaptive towards both local level set geometry and
image gradient, and it allows extremely convenient enhancement/reduction
of curve precision by simply putting more/fewer points on the computation
domain. A detailed discussion of this scheme can be found in [3]. Then, find
all the points in the narrow band of the current zero level set.

3. Influence Domain Generation: Generate a proper influence domain for each
point within the narrow band (see detailed discussion later).

4. Shape Function Construction: Here, we use the concept of moving least
squares (MLS) to construct the shape functions. It is assumed the cur-
rent active point x with its neighboring nodes xI , I = 1, 2, ..., n are given
in the influence domain. Following the work in [5], the MLS-derived shape
function is NI(x) =

∑m
j pj(x)(A−1(x)B(x))jI = pT A−1BI , with A(x) =

∑
I w(x − xI)p(xI )pT (xI), BI = w(x − xI)p(xI), B(x) = [B1,B2, ...,Bn].

p(x) is polynomial basis functions, and w(x −xI) is the weighting function.
5. Evaluation of Integrals: To update level set function of Equation (10), ma-

trices G and �G need to be calculated. That is, one needs to integrate
over the influence domain. This can be carried out through numerical tech-
niques which approximate a continuous integral over Ωe into a discrete sum:
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∫
Ωe

f(ξ) =
∑nq

l=1 wlf(ξl), where nq is number of quadrature points, ξl is
the coordinates of sampling point l, and wl is the corresponding weighting
factor. Here, we use the Gaussian quadrature technique which is the most
commonly used integration scheme in meshfree particle methods [6].

6. Updating Procedure: Update level set function φ using Equation (10).
7. Reinitialization: Re-initialize φ(·, t + 1) to be the signed distance function of

its zero level set.
8. Convergence Test: Set proper convergence criterion to test whether the zero

level set reaches object boundary. If no, go back to step 2.

Influence Domain Determination. In the level set formulation based on
distance measure, there is an entire family of isocontours of different level set
values (although only one of which is the zero level set). For each data point in
the narrow band, or a node, its all important influence domain Ωe is determined
by a data-driven local operation. And the geometry of the resulting influence
domain adapts to the isocontour segment to which it belongs (see Fig. 1 for an
illustration).

First, we calculate the image gradient magnitude | � I(xnb)| within the nar-
rowband and normalize them to [0, 1], where xnb is the narrow band node points
set. Starting with an arbitrary narrow band point xnb(i) (the red point in Fig.
1), let xi = xnb(i) and tag it as active. We then compute the normal vector n,
the tangent vector t, and curvature κ of the active point. Adding a tangent vir-
tual node along the tangent direction use xi = xi + tscale

|κ| t (adding the opposite
point by xi = xi − tscale

|κ| t ), where tscale is the tangential scale factor. This way,
the higher the curvature, the closer the added point will be to the active point,
which will in turn guarantee that fine shape details will be preserved. We then
tag the new added point as active point. This process is executed iteratively until
the number of added points has reached a specified limit, which is determined
by totscale

exp(|�I(xnb(i))|) , where totscale is another scale factor. This entire procedure
implies that for low image gradient node, many virtual points will be added
in the tangent direction (large Ωe dimension size in the tangent direction). Of
course for high image gradient node, there will be few virtual points added and
the Ωe dimension size in the tangent direction will be small. In the same fash-
ion, virtual nodes in normal direction can be added using a similar scheme by
xi ± nscale| � I(xi)|n where nscale is the normal direction scale factor.

3 Experiments and Results

In Fig. 2, comparison is made between traditional GAC and GAC-ANI on their
ability to deal with boundary gaps. The test object contains a big blurred area
on the right boundary and a small blurred area on the lower left boundary.
Clearly, the traditional GAC curve keeps shrinking and leaks through the broken
edges, while GAC-ANI does not suffer from such leakage problem and converges
to the true boundary since the neighborhood point information offers useful
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Fig. 2. Segmentation of noisy synthetic image with boundary occlusion: traditional
level set implemented on finite difference grid (top); GAC-ANI on adaptive point cloud.

Fig. 3. The ability of the GAC-ANI to handle topological changes

Fig. 4. Segmentation process on the bone CT image: GAC (left) and GAC-ANI (right)

Fig. 5. Epicardial segmentation process on canine MRI image: traditional GAC (left
three) and GAC-ANI (right three). The red circles highlight the ill-defined boundary
areas (upper-right: image void caused by implanted marker; lower-left: weak contrast
between myocardium and background tussue) where neighboring influence is dominant.

expanded view on the image boundaries. Each contour point of the GAC-ANI
belonging to the blurred area is adaptively assigned large influence domain and
thus detects the boundary properly, while front point elsewhere is determined to
have very small influence domain and thus behaves just like the traditional level
set point. In Fig. 3, starting from a single front, GAC-ANI manages to split and
capture all the boundaries of three objects, just like a traditional GAC. During
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the segmentation process, as the front moves, the nodes in the narrow band
are adaptively constructed depending on local image (red points) and geometry
(cyan points). Finally, we show the segmentation results on several real medical
images. In the bone CT image segmentation (Fig. 4), the low-left corner of the
big bone has a relatively weak edge. While the traditional GAC leaks through
the edge (left figures), GAC-ANI properly stops at that part of the edge (right
figures). In the difficult task of epicardial segmentation from the canine cardiac
MRI image (Fig. 5), the ill-defined epicardium from its background and the void
caused by implanted imaging-opaque markers make the traditional GAC fail to
produce appropriate definition of the boundary, while the proposed GAC-ANI
yields proper, smooth segmentation result.
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