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Abstract. We describe a novel approach to combining shape and ap-
pearance features in the statistical analysis of structures in medical im-
ages. The continuous medial representation is used to relate these two
types of features meaningfully. The representation imposes a shape-based
coordinate system on structure interiors, in a way that uses the bound-
ary normal as one of the coordinate axes, while providing an onto and
nearly one-to-one parametrization. This coordinate system is used to
sample image intensities in the context of shape. The approach is illus-
trated by the principal components analysis of the shape and appearance
of the hippocampus in T1-weighted MRI from a schizophrenia study.

1 Introduction

In medical image analysis, it is typical to describe anatomical structures in terms
of either shape or appearance. Combining these two classes of descriptors is
challenging because appearance features are local measurements of certain tissue
properties (e.g., T1 relaxation) that are sampled on a lattice, while shape features
are derived from geometric loci (e.g., boundaries) that are modeled by meshes
or parametric manifolds. The importance of combining shape and appearance
features in the statistical analysis of anatomical structures is underscored by the
wide use of Active Shape and Active Appearance models (ASM/AAM) [4,5].

In this paper, we demonstrate how the continuous medial representation (cm-
rep) [13] can be used to co-analyze shape and appearance. Specifically, we focus
on the unique way in which cm-reps impose a common shape-based coordinate
system on anatomical structures in a population. This coordinate system ex-
tends the boundary parametrization y(u1, u2) onto the entire volumetric region
enclosed by the boundary, in a way that (1) is depth-based, i.e., it preserves
coordinates u1 and u2 along vectors normal to the boundary, and (2) is onto
and, except at a codimension 1 set of points, one-to-one. The first property is
akin to ASMs, which use fixed-length intensity profiles normal to the boundary
to associate shape features with appearance features. The second property is
analogous to AAMs. Hence, our method combines two attractive, but mutually
exclusive, properties of ASMs and AAMs. However, it does so at the cost of rep-
resentational accuracy, as cm-rep models are restricted to a class of shapes with
non-branching skeletons. In [13], we estimated the accuracy with which cm-reps
can describe the hippocampus. In this paper, we illustrate how cm-reps can be
used to study the variability in hippocampal shape and appearance.
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2 Methods and Experimental Results

2.1 Modeling Anatomical Structures with CM-Reps

In the first approximation, the cm-rep approach is the continuous analog of the
Pizer et al. m-rep method [11]. Anatomical structures are modeled by inverting
the process of skeletonization: the skeleton of a structure is defined explicitly
and the boundary is derived from the skeleton analytically. In our method, the
skeleton is described parametrically as a combination of a medial manifold and
a positive-valued radial scalar field given at each point on this manifold (the
modeling of branching skeletons as a set of connected medial manifolds is the
subject of ongoing research). The radial scalar field is in turn derived from a
radial conductance scalar field by solving a Poisson PDE. This step is necessary
to conform to the equality constraints imposed on the radial scalar field by the
medial geometry. The medial manifold and the radial conductance scalar field are
defined using basis functions whose coefficients can be varied in order to apply
deformations to the model. Actual anatomical structures are represented by
fitting a template to characteristic images in a Bayesian estimation framework.
In the following paragraphs, we describe our approach in greater detail. However,
for a complete treatment of the subject, we refer the reader to [13].

A cm-rep model is defined uniquely by two sequences of coefficients: a vector-
valued sequence w1, . . . ,wN in R

3 and a real-valued sequence ω1, . . . , ωM . These
coefficients are used together with a sequence of orthogonal twice-differentiable
basis functions fi(u1, u2) on a regular domain Ω ∈ R

2 to define the medial
manifold x and the radial conductance scalar field ρ as

x(u1, u2) =
N∑

i=0

wi fi(u1, u2) ; ρ(u1, u2) =
M∑

i=0

ωi fi(u1, u2) . (1)

Currently, we use the real components of the Fourier basis to define functions
fi, but we expect that in the future a wavelet basis will prove to be better suited
for Bayesian estimation of the coefficients.

The radial scalar field R is derived from the medial manifold x and the radial
conductance field ρ by solving the following variant of the Poisson PDE:

�xR2 = ρ ; ||gradxR|| = 1 on ∂Ω , (2)

where �x and gradx denote, respectively, the Laplace-Beltrami operator and
the Riemannian gradient on the manifold x. These operators are intrinsic man-
ifold generalizations of the Laplacian and gradient operators in R

n. Despite the
unusual non-linear boundary condition, the PDE carries many desirable proper-
ties, such as uniqueness (which we can prove formally), existence and stability
(which are supported by empirical evidence), invariance under similarity trans-
forms applied to x, etc. We solve this PDE numerically using Newton’s method
in the Finite Differences framework.

The boundary surface y associated with a cm-rep model is generated ana-
lytically from the medial manifold and the radial field. This surface is naturally
partitioned into two halves, y+ and y−, one on each side of the medial manifold:
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Fig. 1. The local geometry of a point on the medial manifold

y± = x + R U± , where U± = −gradxR ±
√

1 − ||gradxR||2 Nx , (3)

and Nx is the unit normal to the medial manifold. This expression is essentially
the inverse of Blum’s Medial Axis Transform [1] in 3-D. It describes two points
of tangency between the sphere of radius R centered at x and the boundary
surface. Unit vectors U± are orthogonal to the boundary surface at y±. Fig. 1
illustrates the medial-boundary relationship described by (3).

It is easy to verify from the boundary condition in (2) that boundary halves
y+ and y− coincide along ∂Ω. This coincidence is a form of an equality constraint
imposed by the medial geometry on functions x and R. If, instead of deriving
R using the PDE (2), we had modeled R explicitly as a weighted sum of basis
functions, we would be presented with a severely overconstrained problem, as the
number of places where the constraint holds would be infinite (all of ∂Ω), while
the number of coefficients defining x and R would be finite. In addition to this
equality constraint, there are certain inequality constraints that the coefficients
wi and ωi must satisfy in order to ensure that y+ and y− form a smooth closed
surface. These are handled in the course of Bayesian estimation.

The three stages of cm-rep construction are illustrated in Fig. 2: the first
panel shows the medial manifold and the radial conductance field, the second
panel plots the radial field, and the third panel shows the boundary surface.
Note that the medial manifold has corners; this is an undesirable side effect of
using the unit square as the domain Ω. We are working to extend our method
to arbitrary domains in R

2.

a. b. c.

Fig. 2. The three steps of constructing a cm-rep. a. A medial manifold x with the
radial conductance function ρ. b. The radial function R computed by solving the
Poisson equation (2) on the manifold. c. Boundary surface y computed using (3).
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The basic ideas behind cm-rep deformable modeling are derived from the
discrete m-rep methodology [11], which is based on pattern theory [10]. First, a
template cm-rep is generated. Currently that is done in an ad hoc manner, but in
the future we plan to study optimal template selection, perhaps adapting tech-
niques developed for m-reps [12]. The deformable template is fitted to instances
of the anatomical structure by minimizing the posterior probability of the coeffi-
cients {wi} and {ωi}, given data in the form of a binary characteristic image of
the structure. In a classical Bayesian estimation framework, the posterior prob-
ability is factored into a likelihood term, which measures the match between
the cm-rep boundary/interior and the binary image, and a prior term. We use
volumetric overlap (which can be computed efficiently using the cm-rep interior
parametrization, Sec. 2.2) and boundary-based match metrics to compute the
likelihood. Penalty prior terms are used to enforce the inequality constraints on
{wi} and {ωi} ‘softly’. In addition, a regularization prior is used to minimize the
distortion in area element on the medial manifold, thus providing a rudimentary
correspondence between instances.

The deforming cm-rep template can only assume shapes for which the skele-
ton is a single manifold. This clearly limits the representational ability of the
model. However, in practice, it appears that many anatomical structures can be
modeled with cm-reps fairly accurately. Indeed, Styner [12] proved that certain
subcortical structures can be represented using single-figure discrete m-reps with
sub-voxel error. To evaluate the representational ability of cm-reps in a similar
manner, we fitted the hippocampus template to 174 (87 right, 87 left) segmenta-
tions of the hippocampus from a MRI schizophrenia study [3]. The segmentation
was computed using the Joshi et al. [9] algorithm for large deformation diffeo-
morphic registration with manually placed anatomic landmarks. This approach
is used extensively in brain morphometry [6] and was shown to be more accurate
and reliable than manual segmentation [8]. The data in the form of boundary
meshes was graciously provided by Profs. Guido Gerig (UNC Depts. of Comp.
Sci. and Psychiatry) and Sarang Joshi (UNC Dept. of Rad. Onc.).

The results of the fitting are illustrated in Fig. 3. The fit was computed in a
multi-resolution procedure where the number of basis functions and coefficients
was gradually increased. At the highest resolution, 8 × 12 × (3 + 1) coefficients
were used. After the fitting, we computed the average of several goodness-of-fit
scores over the entire data set. These include mean squared distance from the

Fig. 3. Examples of a template fitted to instances of the hippocampus. The solid
blue surface is the boundary of the subject hippocampus, and the white mesh is the
boundary of the fitted cm-rep template.
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cm-rep boundary to the hippocampus boundary (0.201 mm), maximum distance
from cm-rep to the hippocampus (1.576 mm), maximum distance from the hip-
pocampus to the cm-rep (2.558 mm) and volume overlap between the cm-rep and
the hippocampus (91.3%). These error scores are slightly worse than the m-rep
results (avg. model-to-hippo. distance of 0.17 mm.) [12] that were computed on
the same images, but using a different manual segmentation. The m-rep model
does not enforce strict conformance to medial geometry, so we expect it to fit
somewhat better than cm-reps.

2.2 CM-Rep Interior Parametrization

One advantage of cm-reps over discrete m-reps and boundary shape shape rep-
resentations is the ability to impose, with ease, a shape-based coordinate system
on the cm-rep interior, i.e, the region of space enclosed by the cm-rep boundary.
For ‘valid’ cm-reps, the interior is homeomorphic to a unit ball. The vectors
U±(u1, u2) with tails at x(u1, u2) span the cm-rep interior. We can use these
properties to define a shape-based coordinate system that consists of the coor-
dinates (u1, u2) ∈ Ω and a scalar ξ ∈ [−1, 1] that describes a point’s location
with respect to the medial axis and the boundary. Formally, we define a mapping
from Ω × [−1, 1] onto the cm-rep interior:

z(u1, u2, ξ) = x(u1, u2) + |ξ|R(u1, u2) Usignξ(u1, u2) (4)

Under this parametrization, points on the medial manifold have ξ = 0 and points
on the boundary have ξ = ±1. If Q is some point on the boundary, then all points
along the inward boundary normal vector with tail at Q have the same first two
coordinate values as Q, due to the fact that the vectors U± are orthogonal to
the cm-rep boundary. The distance from a point on the cm-rep interior to the
nearest point on the cm-rep boundary is equal to (1 − |ξ|)R(u1, u2).

Thus, we have parameterized the entire object interior, in a way that, roughly
speaking, associates each interior point with the nearest point on the boundary.
This type of interior parametrization is consistent with the way that the ASM [4]
samples image intensities inside objects using profiles that extend in the normal
direction from the boundary. Unlike ASM, but like AAM [5], our parametrization
is onto. It is also one-to-one, with the exception of a codimension 1 set of points
whose coordinates (u1, u2) ∈ ∂Ω. For these points, z(u1, u2, ξ) = z(u1, u2, −ξ).
Thus, we may say that our coordinate system combines the best of ASM and
AAM: the preservation of boundary normal direction and (nearly) one-to-one
and onto parametrization.

When cm-reps are fitted to anatomical objects in medical images, we are
able to use this coordinate system to sample image intensities. This ability is
illustrated in Figs. 4 and 5a. Here, a cm-rep has been fitted to the hippocam-
pus in a T1 image (Fig. 4a.). The values of u1, u2 and ξ coordinates of on the
cm-rep interior are shown using color maps in Figs. 4b-d. Fig. 5a shows the im-
age intensities mapped back to the u1, u2 and ξ space. This mapping of image
intensities associates shape features with intensity features, and is a unique way
of establishing across-subject correspondences between intensities on the basis
of geometry.
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a. b. c. d.

Fig. 4. The shape-based coordinate system induced by a cm-rep. a. A slice through
the hippocampus in a T1 weighted MRI, to which a cm-rep template has been fitted.
b, c. The values of the coordinates u1, u2, which span the medial manifold, plotted at
each point in the hippocampus using a color map. d. The values of the ξ coordinate,
which goes from the medial manifold to the boundary.

a. b.

Fig. 5. a. MRI intensities of the hippocampus in Fig 4a, sampled on a lattice in the
shape-based coordinate system. The slices are taken as ξ goes from -1 to 1, and the
axes are along the u1 and u2 coordinates. Sampling used cubic interpolation. b. The
PCA mean of the hippocampal image intensities in the shape-based coordinate system.
The CSF adjacent to the hippocampus can be seen near the edges; this illustrates the
error in the initial segmentation combined with the error in cm-rep fitting.

Fig. 6. Four principal modes of variability in the left hippocampus shape. The eigen-
values corresponding to these modes are 2.57, 2.28, 1.81 and 0.96, the total spectrum
is 11.38, so the modes shown here represent 66.8% of total variability. The color map
represents the radius function.
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2.3 Statistical Modeling

To show how cm-reps would be used for shape characterization, we performed
principal component analysis (PCA) on the shape and appearance features of
cm-reps fitted to the hippocampus data. The shape features were computed by
taking the values of the coefficients {wi}, {ωi} after aligning the cm-reps using
the Generalized Procrustes method [7]. The appearance features were sampled on
a regular lattice in the u1, u2, ξ space. Fig. 6 shows the mean shape and principal
modes of shape variability, and Fig. 5b shows the mean intensity pattern. Our
PCA did not take into account the fact that some linear combinations of the cm-
rep parameters that PCA generates can violate one of the inequality constraints
mentioned above. However, no invalid cm-reps were generated by staying within
2.8 standard deviations from the mean in the first 10 principal modes. This
indicates that valid and invalid cm-reps are well separated in feature space.

3 Discussion and Conclusions

We have presented cm-reps : a shape representation that models the continu-
ous geometric relationship between the boundaries and skeletons of objects. The
ability to impose a coordinate system on the interior of structures in a way that
preserves two of the three coordinates along boundary normals and is nearly
one-to-one and onto is the strength of the representation. The lossy nature of
the representation, which is a potential weakness, was evaluated for the hip-
pocampus, and the average representational error was found to be relatively
small. The utility of cm-reps for the statistical analysis of shape and appearance
was demonstrated by applying PCA to the cm-reps of the hippocampus. In the
future, we plan to address the problem of cm-rep correspondence more directly
and to use the cm-rep PCA as a component in an algorithm for the segmen-
tation the hippocampus in structural MRI. We also intend to use cm-reps for
structure-oriented fMRI analysis.

Other approaches to depth-based parametrization of interiors of anatomical
structures have appeared in the recent literature. These methods typically em-
ploy distance transforms or skeletonization algorithms to assign a depth-based
coordinate system to objects. For instance, Bouix et al. [2] find the dominant
medial surface in the hippocampus and flatten it to form a reference space. The
advantage of our method is that it is model-based, so a consistent shape-based
coordinate system is given by construction, while methods such as [2] require
pruning of skeletal branches and registration to find a common coordinate frame.
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