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Abstract.  In this work, a discriminative model of attention deficit hyperactivity 
disorder (ADHD) is presented on the basis of multivariate pattern classification 
and functional magnetic resonance imaging (fMRI). This model consists of two 
parts, a classifier and an intuitive representation of discriminative pattern of 
brain function between patients and normal controls. Regional homogeneity 
(ReHo), a measure of brain function at resting-state, is used here as a feature of 
classification. Fisher discriminative analysis (FDA) is performed on the features 
of training samples and a linear classifier is generated. Our initial experimental 
results show a successful classification rate of 85%, using leave-one-out cross 
validation. The classifier is also compared with linear support vector machine 
(SVM) and Batch Perceptron. Our classifier outperforms the alternatives sig-
nificantly. Fisher brain, the optimal projective-direction vector in FDA, is used 
to represent the discriminative pattern. Some abnormal brain regions identified 
by Fisher brain, like prefrontal cortex and anterior cingulate cortex, are well 
consistent with that reported in neuroimaging studies on ADHD. Moreover, 
some less reported but highly discriminative regions are also identified. We 
conclude that the discriminative model has potential ability to improve current 
diagnosis and treatment evaluation of ADHD. 

1   Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most commonly diag-
nosed childhood behavioral disorders. According to related reports, 3~6% American 
and 5% Chinese school-age children are affected by ADHD. Developmentally inap-
propriate inattention, impulsivity, and hyperactivity are three core symptoms of 
ADHD. Children with ADHD have difficulty on controlling their behaviors or focus-
ing their attentions which result in an adverse effect on academic performance and 
social function. Current available diagnosis and treatment evaluation of ADHD are 
mainly made from the levels of the core symptoms. Ranking of the symptoms is usu-
ally made by the parents or teachers of the children, which is unfortunately subjective. 
Therefore more objective approaches are highly desired. 
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With the high spatial and temporal resolution as well as the non-invasive advan-
tage, structural and functional magnetic resonance imaging (MRI) have been playing 
an increasingly important role in brain studies. Volumetric [1], morphological [2, 3] 
and functional [4, 5] brain properties have been studied on ADHD with MRI [6, 7]. 
Voxel-based structural and functional MRI studies on ADHD have suggested various 
brain abnormalities [7]. However such a group-level statistical difference is less help-
ful to diagnosis. Currently some promising studies on mental diseases [8, 9, 10, 11, 
12] with multivariate statistical classifiers using neuroimaging information were re-
ported. Unfortunately few were concerned on ADHD. Moreover, explanation of clas-
sification result in these studies is still unsatisfactory. In this work, an ADHD dis-
criminative model which includes an ADHD classifier and an intuitive representation 
of discriminative pattern is proposed on the basis of Fisher discriminative analysis 
(FDA) of brain function obtained from resting-state fMRI.  

The classification feature and classification algorithm will be detailed in Section 2 
and 3 respectively. Materials are presented in Section 4. Experimental results and 
discussion are provided in Section 5. Section 6 is devoted to conclusion and some 
further directions.  

2   Mapping of Brain Function at Resting-State 

Low-frequency (0.01–0.08 Hz) fluctuation (LLF) synchrony among motor cortices 
was studied by Biswal at 1995, which indicated that LFF was physiologically mean-
ingful [13]. Later some studies about diseases had been conducted using LFF syn-
chrony [14, 15, 16]. As a mapping of brain function, regional homogeneity (ReHo) 
was first proposed to measure the regional synchrony of LFF voxel by voxel, and then 
employed to verify the default mode network (DMN) [17] successfully in [18]. ReHo 
has also been used to locate the ROIs automatically without a priori in a study of 
brain function connectivity [19]. Here, we used ReHo derived from fMRI series 
scanned at resting-state as a feature of classification. ReHo was defined at a given 
voxel as the temporal similarity of the LFF between the voxel and its neighbors, 
which was calculated with Kendall’s coefficient as (1).  
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where W is the Kendall’s coefficient among given voxels, Ri the sum rank of the ith 
time point, ( )( )1 / 2R n K= +  the mean of the Ri’s,  K the number of time series within a 

measured cluster and we used K=27 as in [18]. 

3   Pseudo-Fisher Discriminative Analysis  

Fisher discriminative analysis (FDA) is a widely used technique in the domain of 
pattern recognition [20, 22]. Suppose there are two classes of samples with features of 
dimension D. Here, D is defined as the number of voxels in consideration. FDA is 
used to find a projective direction, ω*∈ℜD, along which the two classes of projected 
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samples are separated with maximal ratio of between-class distance and within-class 
variability. Mathematically, objective function (2) is to be maximized  
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sizes. Theoretically, the optimal ω* can be determined by:   
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However, in case of small-sample (N1+N2 << D), which is common in brain image 
analysis, computing of inverse matrix of Sw is an ill-posed problem and therefore 
FDA would yield an unreliable result. While pseudo-Fisher discriminative analysis 
(pFDA), which is a variation of classical FDA, can solve the problem by using the 
pseudo-inverse of Sw to substitute the inverse of Sw [23, 24]. Briefly, principal com-
ponent analysis (PCA) was firstly applied on sample features, xi∈ℜD, to find a linear 
subspace, ℜd, spanned by all the eigenvectors, {α1, α2, …, αd}, with non-zero eigen-
value. Representing an original sample feature, x∈ℜD, with {α1, α2, …, αd} would 
result in a low-dimension feature, y∈ℜd (d= N1+N2-1), so that classical FDA and (3) 
can be directly used in the subspace to find ω*∈ℜd.  Projecting each sample, y ∈ℜd, 
onto ω*∈ℜd can result in a one-dimensional score of z∈ℜ1 by inner product opera-
tion, *,z y ω= . Finally, the classification threshold, z0∈ℜ1, was determined by:  
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where 
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m and 
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z
m  are centers of projective scores of the two classes. 

4   Materials 

To eliminate the impact of head motion on the calculation of ReHo maps, the subjects 
with head motion greater than 1.2 mm or rotation greater than 1.2o were excluded. 
The remained 9 ADHD and 11 controls (age range of 11-15 years and IQ > 80) were 
used for further analysis.  

The imaging processes were undertaken on the SIEMENS TRIO 3-Tesla scanner 
in Institute of Biophysics, Chinese Academy of Sciences. For each subject we con-
cerned the following two sets of imaging data: resting-state fMRI time cou   rses and 
3D structural MRI. Echo Planer Imaging (EPI) Blood Oxygenation Level Dependent 
(BOLD) images were acquired axially with the following parameters: 2000/30 ms 
(TR/TE), 30 slices, 4.5/0 mm (thickness/gap), 220 × 220 mm (FOV), 64 × 64 (resolu-
tion), 90o (flip angle), the whole session lasted for 480 seconds. 3D spoiled gradient-
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recalled whole-brain volume was acquired sagittally with the following parameters: 
1700/3.92 ms (TR/TE), 192 slices, 1.0/0 mm (thickness/gap), 256 × 256 mm (FOV), 
256 × 256 (resolution), 12o (flip angle).  

Preprocessing procedures for fMRI signals included motion correction, within-
subject registration, time aligning across slices, time series linear detrending, voxels 

resampling to 3×3×3 mm3, spatially smoothing (FWHM = 4mm) and spatial normali-
zation. All these processes were undertaken using SPM2 [25].  

5   Experiments Results and Discussion 

pFDA was performed on ReHo maps of the 9 ADHD and 11 controls, and an ADHD 
classifier and a representation of discriminative pattern were generated. First, the 
classifier was tested with the training samples to indicate the separability of the classi-
fier on training set. Then leave-one-out (LOO) cross validation approach was em-
ployed to estimate the prediction ability of the model. Classification results are listed 
in the top row of Table 1, form which zero training error is achieved, and correct 
predictions performed on ADHD and controls are 78% and 91% respectively. The 
total correct prediction rate reaches 85%. 

Table 1. Classification results  

LOO test correct rate  Discriminative model Training set  
correct rate Controls ADHD Total 

Functional 
information  

ReHo Map 100% 91% 78% 85% 

Intensity 100% 38% 67% 53% Structural 
information Morphology 100% 50% 56% 53% 

The distribution of projective scores of both the training and predicting samples in 
a 20-round LOO test are shown in Fig. 1, where white circles and squares represent 
normal controls and children with ADHD in the training set of LOO test respectively, 
and black circles and squares represent the control and patient for predicting respec-
tively. The crosses indicate the corresponding classification thresholds determined by 
(4). As in Fig. 1, there are only one testing control and two testing patients located on 
the wrong sides of the classification boundary by the classifier. Moreover, within-
class variations of projective scores of training samples are all close to zero, and be-
tween-class distances are quite large. This result convinces the objective of FDA. 

With {α1, α2, …, αd}, the optimal projective direction in subspace ℜd can be easily 
inversely mapped to the original space ℜD. The projective direction in ℜD or Fisher 
brain, as a part of the discriminative model, was used to visualize the discriminative 
pattern of ReHo between the children with ADHD and normal controls. As illustrated 
in Fig.2, the larger the amplitude (positive or negative) of a voxel in the Fisher brain, 
the more the voxel contributes to the final discrimination. As shown in Fig.3, some 
highly discriminative regions are identified by the Fisher brain. Among these regions, 
prefrontal cortex and anterior cingulate cortex have been reported to be involved in 
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Fig. 2. Fisher brain to visualize the discriminative pattern  

 

Fig. 3. Highly discriminative regions identified by Fisher brain. Red: ADHD>control; Blue: 
ADHD<control. 

  

Fig. 1. Distribution of discriminative scores in LOO test
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higher brain functions like attention and inhibition and abnormal for ADHD subjects 
[1, 2, 4, 7]. Moreover, some less reported but highly discriminative regions are also 
identified.  

Our classifier was compared with other two typical linear classifiers, Batch Percep-
tron [20] and linear support vector machine (SVM) [21]. Table 2 lists the classifica-
tion results of the three methods. Considering the stochastic property of Batch Percep-
tron algorithm, we repeated the 20-round LOO test for 10 times, each with a random 
initialization. Then the correct rates of 10 times of LOO tests were averaged as the 
final result of Batch Perceptron. From Table 2 we see that Batch Perceptron (54%) 
hardly yields a meaningful result. Though linear SVM has much better performance 
than Batch Perceptron, its classification rate (80%) is obviously lower than that of the 
proposed classifier (85%). 

Table 2. Comparison of different linear classifer 

LOO test correct rate  Methods 
Controls ADHD Total 

Batch Perceptron  62% 46% 54% 
Linear SVM  100% 56% 80% 
Proposed  91% 78% 85% 

To compare the discriminative ability of functional brain information with that of 
structural brain information, FDA was also applied to 3D structural MR images. All  
3D structural MR images were spatially normalized using SPM2 [25]. To comprehen-
sively investigate the discriminative ability of structural brain information, both origi-
nal 3D MR images and their tissue segmentation results were used as the classifica-
tion features. Multi-context fuzzy clustering (MCFC) algorithm was used for tissue 
segmentation since it is insensitive to the intensity inhomogeneities [26]. The classifi-
cation results of FDA using original MR images and segmented images are depicted 
in the second and third row of Table 1 respectively. Generally speaking, no significant 
difference in classification performance appears between intensity based approach 
and morphology based one, and none of them yield a meaningful classification result 
(53%). The results clearly demonstrate that ReHo map, as a mapping of brain function 
of resting state, is more effective for discrimination of ADHD than structural informa-
tion of either the original MR intensity or the tissue segmentation result. More impor-
tantly, this implies that brain function may be more susceptible than brain structures 
for ADHD. 

6   Conclusion 

In this paper, a discriminative model of ADHD was proposed on the basis of Fisher 
discriminative analysis of ReHo map derived from fMRI scanned at resting state. The 
validation of the method was verified by experimental results. Compared with various 
classifiers and classification features, our method achieved much better classification 
performance. Furthermore, it yielded a significant representation for the discrimina-
tive pattern of brain function between the children with ADHD and the normal con-
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trols. Potential improvement of the diagnosis and treatment evaluation of ADHD can 
be realized based on the evidence given by the results of the discriminative model. 

Evaluation of the proposed method with larger sample size and multi-center imag-
ing data of children with ADHD is considered in future work. The statistic property of 
the Fisher brain is another issue to be addressed. Moreover, those less reported but 
highly discriminative regions found in this study will be further examined.  
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