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Abstract. Fast retrieval using organ shapes is crucial in medical image
databases since shape is a clinically prominent feature. In this paper,
we propose that 2-D shapes in medical image databases can be indexed
by embedding them into a vector space and using efficient vector space
indexing. An optimal shape space embedding is proposed for this pur-
pose. Experimental results of indexing vertebral shapes in the NHANES
IT database are presented. The results show that vector space indexing
following embedding gives superior performance than metric indexing.

1 Introduction

Content-based retrieval in medical image databases is critically dependent on
efficient indexing techniques. There are two common indexing techniques: vector
space indexing, and metric space indexing. If a feature has well defined coordi-
nates, then vector space indexing techniques are used. If the feature does not
have coordinates, then metric space indering techniques are applicable.

In this paper, we propose techniques for efficient indexing of shape for 2-D
medical image databases. We show that the 2-D shape space can be embedded
in a vector space in such a way that the vector space metric best approximates
the partial Procrustes distance in the shape space. With the optimal embedding,
shapes can be indexed by classical vector space indexing techniques. We provide
experimental results that compare the performance of the embedding strategy
versus metric trees and show that the embedding strategy gives superior results.

All experiments reported in this paper use images from the NHANES II
database. NHANES II has about 17,000 spine x-ray images. Spine disease is often
manifest as osteophyte, which is bony prominence along the vertebral boundary.
Because osteophyte changes the shape of the vertebra, retrieval by vertebral
shape is important to NHANES II. Indexing vertebral shape in NHANES 1T is
our main application.

The vertebrae are segmented using a dynamic programming template match-
ing algorithm [T1]. The output of this algorithm is a fixed set of m points placed
on the vertebral boundary in a homologous manner. These points may be taken
as landmarks along the boundary. By “shapes of vertebrae” we mean the shapes
of these “landmark” points.

This paper draws on indexing theory and shape space theory — two theories
that are quite different. In the limited space of this paper, we have opted to treat
indexing rather briefly and present the shape embedding in more detail.
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2 Literature Review

The literature on shape analysis is vast. We briefly mention some of the related
work. Shape descriptors may be boundary based or region based. For boundary
based descriptors, Fourier and wavelet descriptors [9], scale space techniques
[6], and shape matching techniques [27] are used. For region based description,
different moment invariants [J9] are used. When landmarks are available, the
shape of the landmarks are described as elements of an appropriate shape space.
We refer the reader to [3/4] for a complete discussion.

For indexing, we note that classical indexing structures for vector spaces are
in [I0], while classical indexing structures for metric spaces are in [IJ.

3 Indexing for Content-Based Retrieval

Content-based retrieval uses range queries and nearest neighbor queries. In a
range query, the user has an example image with a feature u and asks the
database to retrieve all images with features v, such that d(u,v) < T for some
threshold T'. Here d() is a metric in the feature space. A nearest neighbor query
asks for k nearest neighbors to the example u according to the metric d. We
concentrate on the nearest neighbor queries in this paper.

Queries can be answered by a linear search through the database. Indezing
trees refer to techniques that can speed up the search by organizing the database
into hierarchical trees. A brief, relevant summary of indexing is as follows:

1. Indexing hierarchically partitions the feature space and creates a cover for
each partition. The covers are arranged in a tree; each node of the tree
representing a cover.

For vector space features, the covers are cubes with sides perpendicular
to the coordinate axis [10]. For metric spaces, the covers are metric spheres.
All leaf nodes point to the data that are contained in its cover.

2. Retrieval starts from the root node and proceeds by testing whether the
cover at a node intersects the metric sphere defined by the query. If a node
passes this node test, then the procedure is applied to the children of the
node. If the node fails the node test, then the entire subtree rooted at the
node is rejected since its children cannot contain any data that intersect the
query sphere.

3. One performance measure for indexing trees is the average number of node
tests per query. This measures the computation cost during retrieval. A
theoretical expression for the performance was derived in [12].

4. The performance of an indexing tree becomes poor if its nodes increasingly
survive the node test. In [12], we proposed a greedy algorithm that traverses
and eliminates inefficient nodes.

In [8], we reported an algorithm that optimally eliminates nodes. The
algorithm is a dynamic program over all possible node eliminations. We call
these procedures tree adaptation procedures since they adapt the tree to the
data distribution.
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4 Shape Spaces and Shape Queries

4.1 Configuration, Preshape, and Shape Space

As mentioned in section [Il vertebrae in NHANES II are segmented by an algo-
rithm that gives a set of m points along the boundary. Representing each point
as a complex number, every boundary can be considered as an element of C™,
the complex vector space of dimension m. C™ is the configuration space. Two
boundaries z;, z; € C™ have the same shape if there exists a translation, rota-
tion, and (non-zero) scaling that aligns them, i.e. if there exist complex numbers
t, u, with p # 0, such that z; = pzj + 1,,,t, where 1, = (1---1)7. Here ¢ is the
translation and p = re? is scaling by r and rotation by 6.

Following Kendall [4], we first consider only the action of scale and transla-
tion. For every z € C™, define Z = %
simply z translated so its center of mass is at the origin and scaled so that the
resulting scale is unity. All shapes that differ only by translation and scaling are
mapped to the same preshape. The preshape space is the set of all preshapes,
and is easily seen to be the unit sphere in the configuration space C™.

The map z — Z from configurations to preshapes factors out translation
and scaling. To get shape, it remains to factor out rotation. Suppose that a
configuration z has preshape z. Rotating z by 6 gives the configuration ze'?

to be the preshape of z. Then, % is

which has the preshape zei. It is easy to show that ze® = e*’z. Thus, all
configurations that have the same shape as z fall on the one dimensional orbit
of Z in the preshape space defined as % = {e¢Z}. The orbit # is the shape of 2.

Since each orbit is a shape, the set of all orbits is the shape space. Kendall
showed that the shape space of m landmarks is a complex projective space of
complex dimension m — 2. This is a non-Euclidean manifold.

The different spaces and relations between them are illustrated in figure [l

Shape space has many natural metrics. The specific one we use is the partial
Procrustes metric dp(z;, z;). It is defined as the minimum Euclidean distance
between the preshape of z; and the orbit of the preshape of z;:

dp(z, ;) = irglf I z;: — eméj Il -

Orbit under One set Orbit under
translation of landmarks rotation
and Scaling

Pre-shape Space Shape Space

Fig. 1. Preshape and Shape Spaces
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4.2 Metric Shape Indexing

Because shape spaces are curved manifolds and the partial Procrustes distance
is non-Euclidean, one obvious choice for indexing shapes is to use metric index-
ing trees. Specifically, we use hierarchical clustering with the partial Procrustes
metric to cluster shapes in a tree. Greedy node elimination and optimal tree
adaptation are used to further increase the efficiency.

As mentioned in section [T, an alternative is to embed the shape space into a
vector space and use vector space indexing. We discuss this next.

5 Shape Embedding

Let zx be one of n configurations in the database, and let zx and zj be its
preshape and shape. Recall that the preshape space is a unit sphere in C™
and that the only variation left in the preshape space is rotation. Hence, it is
reasonable to consider choosing one point on the preshape orbit of zi to represent
Zi. That is, we choose the preshape with a particular orientation (yet to be
determined) as the shape embedding. This is our key idea and is illustrated in
figure

Suppose we embed Zzj as the point on the preshape orbit that is given by
[2k] = €%z}, for some ). This embedding gives a Euclidean shape distance:

ds([2i], [2]) = Ilfzi] = [=4]ll, (1)

where, || || is the usual Euclidean norm in C™. In general, this shape distance will

be different from the partial Procrustes distance, and we would like to choose

an embedding such that the difference between them is as small as possible.
One measure of the difference between dp and d; is

T =322 1 [5)) = di(i2) | (2)

We would like to choose embeddings [21] = €127, [20] = €¥223,---, or alter-
natively, choose the angles © = (01,02, --,6,) such that J is minimized as a
function of . From now on we will write J as J(©) explicitly showing depen-
dence on ©. We now derive an algorithm for minimizing J(©).

) Shape re-embedded
Euclidean m in its pre-shape orbit
space C

Orbit under

rotation Each orbit

maps to a
point

Pre-shape Space Shape Space

Fig. 2. Shape Embedding in Preshape Space
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The first step is to show the following proposition:

Proposition 1: A © minimizes J(O) if and only if it minimizes

7(©) = 33" d(l=).[2) )

Proof: First note that d,([2;], [2;]) is the Euclidean distance between two fixed

point [z;] and [z;] on the preshape orbits of z; and ;. But dp(z;, z;) is the shortest
distance between preshape orbits of z; and zj. Thus, ds([z], [2;]) > dp (2, 2;),
and therefore | d2([z], [2]) — d%(zi,2;) |= d2([zi], [2j]) — d%(2i, 2j). Note that
the d%(z;, z;) term is independent of © and can be dropped from J(O), giving

J(©) =3 di(lz][2]) = 1(6).
(]
To proceed further, a simple algebraic manipulation of J;(©) gives:
7(O) = 33 dlail (5] =20 Y el - - Sl %
i g i j
As a brief aside, consider a second objective function

Hl(@hu')ZQRZ” [ei] = w12 (4)

The minimizing p of H; is known in the shape space literature as the procrustean
mean size-and-shape of the preshapes z;. Conditions for a unique procrustean
mean size-and-shape are given in [5]. Loosely speaking, a unique p exists if the
distribution of z; is not too broad. In practice this condition almost always holds
and a unique p exists. We assume this to be the case and we have

Proposition 2: If H;(O, 1) has a minimizer (©*, u*), ©* minimizes J;(O).

Proof: For any fixed ©, because [z;] are in the vector space C™, and || | is
the usual Euclidean norm, the function H;(©, ) has a unique minimum with
respect to p, and the minimum is given by p* = %Z] [z;]. Thus,

. 1
min H1(0,0) =203 || [ = = S ls5] 2 = 2 (©).
i J
It follows that if H1(O, ) has a minimizer (0%, u*), ©* also minimizes J; (O).
To obtain the optimal embedding, we minimize H; (O, 1) by alternately up-
dating © and p as follows:

1. Initialize ©1% = (0,---,0), and pl® = L 37 2.
2. Update O = argg min H, (0, ul'=1), where 6O = (95”, -+, 6 is given by

0 = arg 2"l =, (5)

where, 7" is the complex conjugate transpose of 2.
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Calculate pl!! = arg, min H, (O, ). This is given by

1 1 ol ~
plt = - Z[zk] == Zemk Zk- (6)
k

k

3. Terminate if a fixed point is reached (i.e. if (O, ulll) = (OU-1 yl-11)),
Else, go to 2.

Let the terminating (6, ul!) be denoted by (é, ft). Then, the optimal em-

bedding is given by [z;] = %z} = H%:ZH 2y, for all k.

5.1 Vector Space Indexing of Shape

Following optimal embedding, the embedded shapes can be indexed by any of
the classical vector space indexing techniques. We choose to index by a kd-tree
[10]. After embedding, shape similarity retrieval is carried out by using the dj
shape metric of equation ().

6 Experiments

At the moment, a total of 2812 boundaries have been segmented. Each boundary
is a consistent set of 34 landmarks.

We first evaluated the closeness of the embedding distance ds to the partial
Procrustes distance dp. Recall that the optimal embedding was obtained by
minimizing the absolute difference between d2 and d% for all pairs of data in
the database. To measure the similarity between the two we calculated fraction
squared difference FSD = [d2([zi], [z;]) — d%([z:], [25])|/d%([2i], [25]) as well as
the fractional difference F'D = |ds([z], [75]) — dp([z], [25])|/dp([zi], [75]). A set
of 1000 vertebrae were randomly chosen from the database and the FSD and FD
were calculated for all pairs of vertebrae from this set. The average and standard
deviation of the FSD and FD are given in Table [[l From the table, it is clear
that the Euclidean distance following embedding is very similar to the partial
Procrustes distance.

We also compared the relative ranking of vertebrae according to the em-
bedded Euclidean distance and the partial Procrustes distance. From the set of
1000 vertebrae used in the above experiment, 100 vertebrae were chosen as query
vertebrae. For each query vertebra, the set of 20 nearest vertebrae was found
according to the partial Procrustes distance dp and the embedded Euclidean
distance ds. For 98 of 100 queries the sets of nearest neighbors were identical,
and for 2 queries they differed by a single image.

Table 1. Mean and Variance of FSD and FD of pairs from a set of 1000 vertebrae

|Quantity|| Mean | Var. |

FSD [[9.19 x 10~ %]2.09 x 10~°
FD [[4.59 x 107%|5.21 x 10~
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Fig. 3. Indexing performance comparison for (a) 5, (b) 10, and (c) 20-nearest neighbors

Finally, the 2812 shapes were randomly sampled into sets of size 434, 902,
1654 and 2812. Each set was indexed for shape with metric and vector indexing
trees. The metric tree was used in its raw form, and to improve its performance
also after greedy node elimination and optimal node elimination. Fach vertebral
shape in the database was used as query and 5, 10 and 20-nearest neighbor
vertebral images were retrieved. The average number of node tests per query
were recorded and expressed as a fraction of the total number of database points
and plotted. Figure Bh-c show the results. From the figures, it is clear that

Fig. 4. Shape query

samples
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in all cases the kd-tree outperforms the raw metric tree. Further, except for the
small database of 434 images and 20-nearest neighbors, the vector space indexing
outperforms metric indexing with adaptation. Also, since the average number
of node tests as a fraction of database size decreases with database size, kd-tree
indexing has sub-linear complexity with respect to database size.

Three illustrative sample queries are given in figure @l The left most image
in each row is the query image and the successive images are the retrieved
neighbors ranked in increasing shape distance from the query. The first query
has an osteophyte near the top left corner. The other two have an osteophyte
near the bottom left corner.

7 Conclusion

We proposed an embedding technique that optimally embeds shapes into a vector
space. This allows the use of vector space indexing techniques for fast retrieval.
Experiments show that the embedding does not significantly alter the metric or
the nearest neighbor queries. Further, shape indexing efficiency using a kd-tree
is significantly higher compared to the raw metric tree. It remains higher even
when the metric tree is adapted.
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