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Abstract. Combination of multiple segmentations has recently been introduced
as an effective method to obtain segmentations that are more accurate than any of
the individual input segmentations. This paper introduces a new way to combine
multiple segmentations using a novel shape-based averaging method. Individual
segmentations are combined based on the signed Euclidean distance maps of the
labels in each input segmentation. Compared to label voting, the new combina-
tion method produces smoother, more regular output segmentations and avoids
fragmentation of contiguous structures. Using publicly available segmented hu-
man brain MR images (IBSR database), we perform a quantitative comparison
between shape-based averaging and label voting by combining random segmen-
tations with controlled error magnitudes and known ground truth. Shape-based
averaging generated combined segmentations that were closer to the ground truth
than combinations from label voting for all numbers of input segmentations (up to
ten). The relative advantage of shape-based averaging over voting was larger for
fewer input segmentations, and larger for greater deviations of the input segmen-
tations from the ground truth. We conclude that shape-based averaging improves
the accuracy of combined segmentations, in particular when only a few input
segmentations are available and when the quality of the input segmentations is
low.

1 Introduction

Combination of multiple segmentations has recently been introduced as an effective
method to obtain segmentations that are more accurate than any of the individual input
segmentations [1,2,3,4]. Typically, such algorithms are based on local (i.e., voxel-wise)
decision fusion schemes, such as voting, or on probability-theoretical combination of
Bayesian classifiers that assign likelihoods to the possible output classes [5,6].

For classification of voxels in multi-dimensional images, this paper introduces a new
way to combine multiple segmentations using a novel shape-based averaging method.
Unlike many other classification problems, there is a natural distance relationship be-
tween the voxels of an n-dimensional image. We exploit this relationship to combine
segmentations based on the signed Euclidean distance maps of the labels in each in-
put segmentation. Compared to label voting, the new combination method produces
smoother, more regular output segmentations, and it also produces segmentations that
are closer to the ground truth as measured by the recognition rate.
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Our method is related to shape-based interpolation, which was introduced by Raya
& Udupa [7] as a method for the interpolation of binary images. Grevera & Udupa [8]
later extended the method to gray-level images by embedding an n-dimensional gray-
level image into an (n+1)-dimensional binary image space. Our approach is similar in
that we consider images with multiple classes of a segmentation. However, our approach
is different insofar as it combines multiple such images on a common grid into one
image, rather than resamples one image onto a new grid. In this sense, our method is a
shape-based averaging method.

2 Methods

Let L be the number of classes in the segmentation. For simplicity, each class is identi-
fied with a number in the set Λ = {0, . . . , L−1}, where class 0 without loss of general-
ity represents the image background. For K different (input) segmentations of the same
image, let sk(x) ∈ Λ for k = 1, . . . , K be the class assigned to voxel x in segmenta-
tion k. We are particularly interested in atlas-based segmentations that are generated by
mapping the coordinates of an image onto those of a segmented atlas image. For sk, let
the atlas image be Ak and the transformation Tk, so that

sk : x �→ Ak(Tk(x)) ∈ Λ. (1)

2.1 Shape-Based Averaging of Segmentations

Let dk,l(x) be the signed Euclidean distance of the voxel at x from the nearest surface
voxel with label l in segmentation k. The value of dk,l(x) is negative if x is inside
structure l, positive if x is outside, zero if and only if x is a voxel on the surface of
structure l in segmentation k. Note that in effect, we derive from each of the abstract-
level classifications sk a measurement-level classification dk,∗.

for all x do � Loop over all voxels to initialize data structures
S(x) ← L � Set label to “undecided”
Dmin(x) ← ∞ � Initialize distance map as “far outside”

end for
for l = 0, . . . , L−1 do � Loop over all labels

for all x do � Loop over all voxels
D ←

∑
k dk,l(x) � Total signed distances for this voxel and label

if D < Dmin(x) then � Is new distance smaller than current minimum?
S(x) ← l � Update combined label map
Dmin(x) ← D � Update minimum total distance

end if
end for

end for

Fig. 1. Shape-based averaging algorithm. See text for details
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Based on the distance maps of all structures in all input segmentations, we define
the total distance of voxel x from label l as

Dl(x) =
K∑

k=1

dk,l(x). (2)

Note that since the number of segmentations K is constant, the total distance is di-
rectly proportional to the average distance. The combined segmentation S(x) for voxel
x is now determined by minimizing the total distance from the combined label (and,
equivalently, the average distance) as

S(x) = arg min
l∈Λ

Dl(x). (3)

This can be iteratively computed using the algorithm in Fig. 1. Note that at any given
time, due to the incremental nature of our algorithm, it requires space for three distance
maps independent of the number of classes L: 1) the individual distance map dk,l for
the current input segmentation k and class l, 2) the total distance map Dl over all seg-
mentations for class l, and 3) the minimum total distance map Dmin over all classes so
far.

The main computational burden of our method stems from repeatedly computing the
Euclidean distance transformation. We use an efficient algorithm by Maurer et al. [9]
that computes the exact Euclidean distance in linear time O(N), where N is the number
of voxels in the image.

Examples of intermediate closest distance maps and corresponding label maps are
illustrated in Fig. 2. For better graphical presentation, the images shown are from a
simpler segmentation problem with a smaller number of less complex structures than
there are in the human brain. As the algorithm iterates over all labels, areas that have
been assigned to a label turn negative in the minimum total distance map (Fig. 2(b)
and 2(c)), representing their location “inside” a structure. When all labels have been
processed, the boundaries between structures are identified by the zero-level set in the
final total distance map (Fig. 2(d)).

2.2 Label Voting

For comparison with our new method, we have implemented a standard segmentation
combination scheme based on label voting. In atlas-based segmentation, labels need to
be computed for non-grid locations in the atlas by interpolation. One interpolation tech-
nique that is applicable to label data and produces better results then nearest neighbor
interpolation (NN) is partial volume (PV) interpolation, introduced by Maes et al. [10]
for histogram generation in entropy-based image registration. Using PV interpolation,
a vector of weights is returned as the classifier output, where each weight represents the
relative share of one label. From these weights, we compute the combined segmenta-
tion for each voxel by sum fusion, i.e., by adding all weight vectors from the individual
segmentations and selecting the class with the highest weight in the sum.

Note that by applying PV interpolation and sum fusion we effectively take advan-
tage of the inherent sub-pixel resolution1 of atlas-based segmentations. Other segmen-

1 NB: sub-pixel resolution does not imply sub-pixel accuracy.
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(a) l = 0 (background)

(b) l ≤ 2

(c) l ≤ 11

(d) l ≤ 22 (final)

Fig. 2. Example of evolving minimum total distance maps Dmin(x) (left image in each pair) and
label maps S(x) (right image in each pair). Brighter values in the distance maps correspond to
positive values (i.e., outside of structures), darker values correspond to negative values (i.e., inside
of structures). (a) Image background is canonically treated as an ordinary label. (b) First two non-
background structures. (c) First 11 non-background structures. (d) Final combined segmentation
(22 structures). For illustrative purposes, the images shown in this figure are from a different,
simpler segmentation problem with a smaller number of less complex structures than there are in
the human brain images used for quantitative evaluation in this paper.
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tation methods, most notably manual segmentation, may not require label interpolation,
in which case combination by sum fusion reduces to combination by vote fusion, i.e.,
counting of discrete votes for each label. The same is true for atlas-based segmentation
when nearest (NN) is used instead of PV interpolation.

2.3 Evaluation

For quantitative evaluation of the combination method independent of the performance
of a particular segmentation algorithm, we apply a strategy introduced by Rohlfing et
al. [3]. This method evaluated classifier combination methods in atlas-based segmen-
tation using segmentations with controlled error magnitudes and known ground truth.
Based on the ground truth segmentation of an image, a random segmentation is gen-
erated by applying a nonrigid coordinate transformation of random magnitude. In par-
ticular, we apply B-spline free-form deformations (FFD) [11] with control point posi-
tions perturbed from the identity transformation by adding Gaussian-distributed random
numbers. The choice of the FFD transformation model is motivated by its compact rep-
resentation, as well as by the fact that it is also used in a popular nonrigid registration
algorithm by Rueckert et al. [12].

A set of publicly available expert-segmented human brain MR images (T1-weighted
anatomical images) from ten subjects was obtained from the Internet Brain Segmen-
tation Repository (IBSR; http://www.cma.mgh.harvard.edu/ibsr/). The
corresponding segmentations with 43 anatomical structures provide the ground truths
for the random segmentation evaluation outlined above (since we do not perform an
actual segmentation, the anatomical MR images were not actually used in this study).
All images had the same size, 256×256×128 voxels, with coronal slice orientation. The
in-plane pixel size was either 0.9 mm or 1.0 mm. The slice spacing of all images was
1.5 mm.

For each image in our test set, twenty random segmentations were generated: ten
with a standard deviation of the random perturbation of the FFD control points of σ =
10 mm, and another ten with σ = 20 mm. Note that larger values of σ correspond to
larger magnitudes of the random FFDs, and thus to larger deviations of the random
segmentations from the (undeformed) ground truth.

For each value of σ, we then computed combinations of two through ten of the re-
spective random segmentations at that error level, once using shape-based averaging
and once using label voting. The accuracy of each combined segmentation was then
quantified by computing the recognition rate, i.e., the fraction of correctly labeled vox-
els as compared to the ground truth segmentation.

3 Results

Examples of combined segmentations using shape-based averaging and label voting are
shown as 3-D renderings in Fig. 3. Shape-based averaging produced visually superior
results. In particular, the inherent spatial continuity of the Euclidean distance maps
avoided fragmentation of contiguous structures.

The recognition rates of combined human brain MR segmentations (simulated seg-
mentations) using shape-based averaging and label voting are plotted in Fig. 4. Results

http://www.cma.mgh.harvard.edu/ibsr/
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(a) (b) (c)

Fig. 3. Three-dimensional rendering of the inferior brain surface of the human brain MR data used
for evaluation. (a) Shape-based averaging. (b) Label voting. (c) Ground truth. The renderings (a)
and (b) are the result of averaging the same five simulated segmentations generated with FFD
perturbation σ = 20mm.

(a) σ = 10 mm (b) σ = 20 mm

Fig. 4. Recognition rates of combined segmentations for shape-based averaging and label voting.
(a) Input segmentations generated using random FFD with σ = 10mm. (b) Input segmentations
generated using random FFD with σ = 20mm. In both graphs, the columns represent the mean
recognition rates over ten subjects. The error bars represent the respective standard deviations.
The dashed lines show the averaged recognition rates of the individual segmentations used as
inputs for the combination methods.

using random deformations with σ = 10 mm are shown in Fig. 4(a), results using
σ = 20 mm in Fig. 4(b).

Both segmentation combination methods generated outputs closer to the ground
truth the more input segmentations were provided to them. Between the two combi-
nation methods, shape-based averaging clearly outperformed label voting in all cases.
The relative advantage of shape-based averaging was larger for smaller numbers of in-
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put segmentations, and it was larger for greater deviations of the input segmentations
from the ground truth (σ = 20 mm). The recognition rate of the combined segmen-
tation using shape-based averaging improved consistently with added input segmenta-
tions, while label voting benefited less from even numbers of inputs than it did from
odd numbers.

Note that combination of two segmentations by voting is not entirely reasonable
as there is no way to decide the winning label in cases of disagreement. Therefore,
the combined classification will fail wherever the two input segmentations disagree.
As a result, the combination of only two segmentations by label voting has a worse
recognition rate than the individual segmentations. Similarly, even numbers of input
segmentations in general increase the likelihood of equal numbers of votes for more
than one label in label voting. Neither is the case for shape-based averaging, which
clearly improves recognition rates even for only two input segmentations, because each
segmentation assigns a weight to every voxel based on its distance from the nearest
structure boundary.

4 Discussion

This paper has introduced a method for shape-based averaging that can be applied to
combine multiple segmentations of the same image. In a quantitative evaluation study
using simulated segmentations, which makes it independent of the performance of any
particular segmentation algorithm, we have demonstrated the superiority of our method
to label voting. Applied to identical input segmentations, shape-based averaging gen-
erated combined segmentations that were substantially closer to the ground truth than
those generated by label voting. The improvement achieved by shape-based averaging
was larger for smaller number of input segmentations, and larger for input segmenta-
tions that deviate more from the ground truth.

While evaluation using randomly deformed ground truth segmentations borrows
from concepts of atlas-based segmentations, our method is straight forward to apply
to segmentations generated by arbitrary labeling methods. It works on as few as two
segmentations, whereas label voting requires at least three and is prone to undecided
voxels for small numbers of segmentations. These properties make our method poten-
tially interesting for combination of multiple manual segmentations, where the number
of available segmentations is typically small.

A potentially useful extension of our method is to use robust averaging rather than
the arithmetic means of the individual distance functions as in the present paper (Eq. 3).
This may improve the combination results in the presence of outliers, and ultimately
also provide an effective way to address the problem of diversity [13] among the input
segmentations.
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