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Abstract. Robotic surgical systems such as Intuitive Surgical’s da Vinci
system provide a rich source of motion and video data from surgical
procedures. In principle, this data can be used to evaluate surgical skill,
provide surgical training feedback, or document essential aspects of a
procedure. If processed online, the data can be used to provide context-
specific information or motion enhancements to the surgeon. However,
in every case, the key step is to relate recorded motion data to a model
of the procedure being performed. This paper examines our progress at
developing techniques for “parsing” raw motion data from a surgical task
into a labelled sequence of surgical gestures. Our current techniques have
achieved >90% fully automated recognition rates on 15 datasets.

1 Introduction
Surgical training and evaluation has traditionally been an interactive and slow
process in which interns and junior residents perform operations under the su-
pervision of a faculty surgeon. This method of training lacks any objective means
of quantifying and assessing surgical skills [1–4]. Economic pressures to reduce
the cost of training surgeons and national limitations on resident work hours
have created a need for efficient methods to supplement traditional training
paradigms. While surgical simulators aim to provide such training, they have
limited impact as a training tool since they are generally operation specific and
cannot be broadly applied [5–8].

Robot-assisted minimally invasive surgical systems, such as Intuitive Surgi-
cal’s da Vinci, introduce new challenges to this paradigm due to its steep learning
curve. However, their ability to record quantitative motion and video data opens
up the possibility of creating descriptive, mathematical models to recognize and
analyze surgical training and performance. These models can then be used to
help evaluate and train surgeons, produce quantitative measures of surgical profi-
ciency, automatically annotate surgical recordings, and provide data for a variety
of other applications in medical informatics.
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Recently, several approaches to surgical skill evaluation have had success. In
the area of high-level surgical modeling, Rosen et al. [9–11] have shown that sta-
tistical models derived from recorded force and motion data can be used to clas-
sify surgical skill level (novice or expert) with classification accuracy approaching
90%. However, these results rely on a manual interpretation of recorded video
data by an expert physician. In the area of low-level surgical data analysis, the
MIST-VR laparoscopic trainer has become a widely used system [12]. These
systems perform low-level analysis of the positions, forces, and times recorded
during training on simulator systems to assess surgical skill [13–15]. Similar
techniques are in a system developed by Darzi et al., the Imperial College Sur-
gical Assessment Device (ICSAD) [16]. ICSAD tracks electromagnetic markers
on a trainee’s hands and uses the motion data to provide information about
the number and speed of hand movements, the distance traveled by the hands,
and the overall task time. ICSAD has been validated and used extensively in
numerous studies, e.g. [17, 18]. Verner et al. [19] collected da Vinci motion data
during performance of a training task by several surgeons. Their analysis also
examined tool tip path length, velocities, and time required to complete the
task.

It is important to note that ICSAD, MIST-VR, and most other systems
mentioned above simply count the number of hand motions, using hand velocity
as the segmentation criteria, and do not attempt to identify surgical gestures.
In this paper we have developed automatic techniques for not only detecting
surgical gestures but also segmenting them. This would allow for the development
of automatic methods to evaluate overall proficiency and specific skills.

2 Modeling Robot-Assisted Surgical Motion

Fig. 1. A video frame of
the suture task used for this
study

Evaluating surgical skill is a complex task, even for
a trained faculty surgeon. As a first step, we inves-
tigate the problem of recognizing simple elementary
motions that occur in a simplified task. Robot mo-
tion analysis of users with varying da Vinci expe-
rience were studied. Automatic recognition of ele-
mentary motion requires complex machine learning
algorithms, and, potentially, a large number of pa-
rameters. To guide the choice of techniques and to
gain useful insight into the problem, we divided the
task into functional modules, illustrated in Fig. 2,
and akin to other pattern recognition tasks such as automatic speech recogni-
tion. In this section, we will describe the data used for this study, the paradigm
for training and testing, and a solution for the motion recognition problem.

2.1 Corpus for the Experiments

The da Vinci API data consists of 78 motion variables acquired at 10 Hz during
operation. Of these, 25 track each of the master console manipulators, and 14
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Fig. 2. Functional block diagram of the system used to recognize elementary surgical
motions in this study

track each of the patient-side manipulators. We selected the suturing task (Fig. 1)
as the model in which our motion vocabulary, m(s), would be defined.

The eight elementary suturing gestures are:

1. reach for needle (gripper open)
2. position needle (holding needle)
3. insert needle/push needle through tissue
4. move to middle with needle (left hand)
5. move to middle with needle (right hand)
6. pull suture with left hand
7. pull suture with right hand
8. orient needle with two hands

2.2 Recognizing Surgical Motion

The task of recognizing elementary surgical motions can be viewed as a mapping
of temporal signals to a sequence of category labels. The category labels belong
to a finite set C, while the temporal signals are real valued stochastic variables,
X(k), tapped from the master and patient-side units. Thus, the task is to map:

F : X(1 : k) �→ C(1 : n)

Our work adopts a statistical framework, where the function F is learned
from the data. The task of learning F can be simplified by projecting X(k)
into a feature space where the categories are well separated. The sequence of
operations is illustrated by the functional block diagram in Fig. 2.

2.3 Feature Processing

The goal of feature processing is to remove redundancy in the input features
while retaining the information essential for recognizing the motions with high
accuracy. As noted earlier, the input feature vectors consist of 78 position and ve-
locity measurements from the da Vinci manipulators. Feature processing reduces
the dimension from 78 to less than 6 features without any loss of performance.
In this work, we have found the following feature processing steps to be effective.
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1. Local Temporal Features: Surgical motion seldom changes from one ges-
ture to another abruptly. Thus information from adjacent input samples can
be useful in improving the accuracy and robustness of recognizing a surgical
motion. As in automatic speech recognition, this information can be incorpo-
rated directly by concatenating the feature vector X(kt) at time t with those
from neighboring samples, t − m to t + m, to make it vector of dimension
(2m + 1)|X(kt)|.

L(kt) = [X(kt−m)|X(kt−m+1)| . . . |X(kt)| . . . |X(kt+m−1)|X(kt+m)]

In addition, derived features such as speed and acceleration were included
as a part of each local temporal feature.

2. Feature Normalization: Since the units of measurements for position and
velocity are different, the range of values that they take are significantly
different. This difference in dynamic range often hurts the performance of a
classifier or a recognition system. So, the mean and variance of each dimen-
sion is normalized by applying a simple transformation,

Ni(k) =
1
σ2

i

(Li(k) − µi),

where µi = 1
N Li(k) and σ2

i = 1
N (Li(k) − µi)2.

3. Linear Discriminant Analysis: When the features corresponding to dif-
ferent surgical motions are well separated, the accuracy of the recognizer can
be considerably improved. One such transformation is the linear discriminant
analysis [20].

Y(k) = WN(k)

The linear transformation matrix W is estimated by maximizing the Fisher
discriminant, which is the ratio of distance between the classes and the aver-
age variance of a class. The transformation that maximizes the ratio projects
the features into a space where the classes are compact but away from each
other.

2.4 Bayes Classifier

The discriminant function, F , could be of several forms. When all errors are
given equal weight, it can be shown that the optimal discriminant function is
given by Bayes decision rule.

Ĉ(1 : n) = argmax
C(1:n)

P (C(1 : n)|Y(1 : k))

= argmax
C(1:n)

P (Y(1 : k)|C(1 : n))P (C(1 : n))

In other words, the optimal decision is to pick the sequence whose posterior
probability, P (C(1 : n)|Y(1 : k)), is maximum. Using Bayes chain rule, this can
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Fig. 3. A plot of the Cartesian positions of the da Vinci left master manipulator,
identified by surgical gesture, during performance of a 4-throw suturing task. The left
plot is that of an expert surgeon while the right is of a less experienced surgeon.

be rewritten as the product of prior probability of the class sequence, P (C(1 :
n)), and the generative probability for the class sequence, P (Y(1 : k)|C(1 : n)).

As a first step, we make the simplifying assumption that each time frame in
the input sequence is independently generated. That is, P (C(1 : k)|Y(1 : k)) =
∏k

i=1 P (C(i)|Y(i)). Thus, the decision is made at each frame independent of its
context.

2.5 Cross-Validation Paradigm

The data used for this study contains 15 expert trials and 12 intermediate trials
of performing a suturing task, consisting of 6 to 8 different elementary surgical
motions. To improve the statistical significance of the results, we performed a 15-
fold cross validation on the expert data. That is, the machine learning algorithm
was evaluated by performing 15 different tests. In each test, two trials were held
out for testing and the statistical models were trained on the rest of the data.
The average across 15 such tests were used to measure the performance of various
settings of the parameters.

3 Results

(3,1) (5,2) (7,2) (10,2) (20,2) (30,2)
80

81

82

83

84

85

86

87

88

89

90

timeunits t and subsample s

re
co

gn
iti

on
 r

at
e 

(%
)

Fig. 4. Results of varying
the temporal length t and
sampling granularity s

To guide the choice of parameters, our initial exper-
iments were performed on the data collected from
15 trials by an expert da Vinci surgeon, performing
a suturing task involving 4 throws (Fig. 1) in each
trial. Subsequently, we applied the recognition and
segmentation techniques on 12 trials of a surgeon
with limited da Vinci experience (intermediate) and
compared the results.

After preliminary observation of the data, a few
preprocessing steps were carried out before model-
ing the surgical motions. Of the eight motions de-
fined in Sec. 2.1, the expert surgeon did not utilize
motion 5 and 7, so they were not modeled. Each
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Fig. 5. The result of LDA reduction with m=6 and d=3. The expert surgeon’s motions
(left) separate more distinctly than the less experienced surgeon’s (right).

dimension of the feature vector from the expert surgeon contained about 600
samples. For example, Fig. 3 illustrates Cartesian positions of the left master
during one of the trials.

3.1 Local Temporal Features

The length and sampling rate of the temporal feature “stacking” was varied
to determine the optimal length and granularity of motion to consider. Our
results showed, as one would expect, that too little temporal length results in a
disappearance of any advantage, whereas too large of a temporal length increased
the chance of blurring the transition between neighboring motions. Fig. 4 shows
the results of varying the temporal length (t) and sampling granularity (s). Due
to its high recognition rates, we use t=10 and s=2 for the rest of our experiments.

3.2 Linear Discriminant Analysis

Fig. 5 shows the reliability of LDA in separating motion data into 6 distinct
regions in a 3-dimensional projection space. An intermediate surgeon’s motions
tend to not separate as well, indicating less consistent motions.

These initial experiments validated the hypothesis that LDA could be used
to simplify the original data into a simpler, low-dimensional data set. A sec-
ond set of experiments examined the effect of varying the number of motion
classes, C(1:{4,5,6}), and the dimensionality of the projection, d = {3,4,5}. The
cross-validation paradigm described in Sec. 2.5 was applied in all experiments
to compute a recognition rate. Table. 1 shows the recognition rates of the Bayes
classifier after the LDA reduction with varying C and d values.

Having fine tuned the classifier for surgical motion, we then applied the al-
gorithm to produce segmentations. Fig. 6 shows the comparison of segmentation
generated by the algorithm and by a human for a randomly chosen trial of the
expert surgeon. In spite of the fact that the model only incorporates weak tem-
poral constraints through the local temporal features described in Sec. 2.3, the
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Table 1. The results of grouping the motion categories and varying the dimension of
the projected space. In the second column, the number of unique integers indicates the
number of motion categories, and the position of the integer indicates which motions
belong to that category.

n class membership LDA dimensions % correct
1 12345566 3 91.26
2 12345566 4 91.46
3 12345566 5 91.14
4 12345555 3 91.06
5 12345555 4 91.34
6 11234455 3 92.09
7 11234455 4 91.92
8 12234444 3 91.88
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Fig. 6. Comparison of automatic segmentation of robot-assisted surgical motion with
manual segmentations. Note, most errors occur at the transitions.

segmentation produces surprisingly good results. In most trials, the errors are
largely at the transition, as shown in Fig. 6. While using the robotic system,
transitions from one motion to the next are often performed without any pause,
and as a result it is difficult even for a human to mark a sharp transition bound-
ary. Consequently, we removed a 0.5 second window at each boundary, so as to
avoid confidence issues in the manual segmentation. The 0.5 second window is
statistically insignificant because an average surgical motion lasts over 3 seconds.

4 Discussion

We have shown that linear discriminant analysis is a robust tool for reducing
and separating surgical motions into a space more conducive to gesture recogni-
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tion. In our highest rated test, we reduced 78 feature vectors into 3 dimensions
with 6 classes and still achieved nearly 90% in recognition. With refinement
and the combination of other statistical methods, such as Hidden Markov Mod-
els (HMMs), we believe mid-90s recognition rates are possible. We have also
suggested how this framework can support objective evaluation of surgical skill
levels by varying different parameters in our mathematical model. Our experi-
ments have shown that the motions of an expert surgeon are very efficient and
thus can be used as a skill evaluator or training model. In ongoing work, we have
begun combining the training of expert and intermediate surgeon data to create
one model that can distinguish varying skill levels.
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