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Abstract. Quantification of left ventricular (LV) deformation from 3D image 
sequences (4D data) is important for the assessment of myocardial viability, 
which can have important clinical implications. To date, feature information 
from either Magnetic Resonance, computed tomographic or echocardiographic 
image data has been assembled with the help of different interpolative models 
to estimate LV deformation. These models typically are designed to be 
computationally efficient (e.g. regularizing strategies using B-splines) or more 
physically realistic (e.g. finite element approximations to biomechanical 
models), but rarely incorporate both notions. In this paper, we combine an 
approach to the extraction and matching of image-derived point features based 
on local shape properties with a boundary element model. This overall scheme 
is intended to be both computationally efficient and physically realistic. In order 
to illustrate this, we compute strains using our method on canine 4D MR image 
sequences and compare the results to those found from a B-spline-based method 
(termed extended free-form deformation (EFFD)) and a method based on finite 
elements (FEM). All results are compared to displacements found using 
implanted markers, taken to be a gold standard. 

1   Introduction 

Quantitative analysis of left ventricular (LV) deformation is known to be a sensitive 
index of myocardial ischemia and injury. However, while there have been many 
methods proposed for the estimation of LV deformation [1, 2, 6, 7], most employ 
some form of modeling to interpolate dense displacement fields from sparse image 
derived features. These features include shape-based measures [1], MR tags [3], MR 
phase velocity [4] and echocardiographic features [5]. These models suffer from an 
inherent tradeoff between the computation time and the complexity of the model. A 
biomechanical model constructed using FEM, which incorporates the microstructure 
of the LV, is considered as the model closest to the physical reality of the LV but 
solving for the parameters embedded in these models is usually time-consuming [2,6]. 
Recently, simple deformation models such as B-spline-based EFFD [8] have been 
developed to estimate the LV deformation [7]. This method is computationally 
efficient but typically doesn’t reflect the true physical properties of LV. Hence these 
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models are typically less accurate. This line of reasoning leads us to the following 
questions: Is it reasonable to trade off the approximation of physical reality with the 
computation time? Is there a method that is computationally more efficient than FEM 
yet still is used to directly incorporate physical parameters?  

Over the several past decades, the Boundary Element Method (BEM) has emerged 
as a versatile and powerful alternative to FEM for the solution of engineering 
problems [9]. The most important advantage of BEM over the FEM is that it only 
requires discretization of the surface rather than the volume. Hence it can speed up the 
solution and it is easier to generate a mesh. The partitioning of only the boundary also 
makes BEM very suited to applications in the LV motion estimation problem where 
most feature points are on the boundary. Thus it is our view in this paper that BEM 
comes close to the physical reality of FEM modeling but is closer to EFFD in 
computation time. 

Our approach, as described in this paper, combines an approach to shape-based 
feature tracking termed generalized robust point matching (G-RPM) [10] with a 
biomechanical model constructed using BEM to derive the dense strains from LV 
image sequences. The attractiveness of G-RPM is its ability to estimate non-rigid 
correspondences with only one-time rough segmentation in the first frame (see [10]).   

To our knowledge no prior work has been reported that compares a B-spline-based 
deformation model with the biomechanical model in this domain.  In this paper, we 
present the comparisons among the B-spline-based EFFD, and biomechanical model-
based BEM and FEM.  

The organization of the paper is as follows. In Section 2, we first briefly review the 
G-RPM algorithm and BEM. The computational cost of FEM and BEM are then 
compared in this section. In Section 3, Canine MRI cardiac datasets are analyzed 
using our algorithm. We estimate each algorithm’s accuracy by comparing the results 
to the displacements found using implanted markers. Meanwhile, the comparisons of 
strain results among the FEM, BEM and EFFD are presented in this section. Finally, 
Section 4 discusses the results and proposed future research. 

2   Methods 

2.1   The G-RPM Algorithm 

G-RPM is an extension of robust point matching (RPM) [7]. We have previously 
reported results using this approach with B-spline in [7]. In this work, we embedded 
shape-based information into RPM and achieved more accurate results than when 
using point distances alone. Assume we have a data point-set X = {xi, i = 1, 2, …, N} 
and a template point-set Y = {ya, a = 1, 2, …, K}. We denote the outlier cluster as 
xN+1 and yK+1, and their unique temperature as T0. To match set Y onto X, it proposed 
to minimize the following objective energy function: 
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Where f is a non-rigid transformation function with parameters α. T is the annealing 
temperature, gradually decreasing to zero as the matching iteration begins. 

Correspondence matrix M or ]1,0[∈aim  is subject to the constraints:∑
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and Aλ  balances the significance between the distance and new information. )( iX xA  

and )( aY yA  are the curvatures of two point-sets, respectively.  

Minimization of equation 1 is solved by an alternating update process where two 
steps are repeated until the algorithm converges. One step is to update the 
correspondence matrix aim . The closed form solution can be obtained by 

differentiating the objective function (1) w.r.t aim  and setting the result to zero:  
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A second step to update transformation parameter α involves a least-squared approach 
given the aim :                                  
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derived from area-based operators [10]. For example, the Gaussian curvature κ  from 
3D volume data is given by: 
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Where ),,( zyxL  denotes image function. xL , yL  and zL  are the first derivatives of 

L in x, y and z, and xxL , yyL  and zzL  are the second partials in x, y and z.  

2.2   The Boundary Element Method 

The boundary element method is a technique for solving partial differential equations 
by reformulating the original PDE into an integral equation over the boundary of a 
solid object [9]. Because the integral equations are over the boundary of the object, 
only the boundary of the object needs to be partitioned. The elastic problem can be 
expressed by Navier’s equation: 
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Where µ and ν are the shear modulus and Poisson’s ratio of the elastic material. u
r

 is 
the displacement vector. The formulation of the boundary integral equations for 
elastic problems requires the knowledge of the solution of the elastic problems with 
the same material properties as the body under consideration but corresponding to an 
infinite domain loaded with a concentrated unit point load. This is called the 
fundamental solution. The integral equation that relates interior displacements to 
boundary displacements and tractions (surface force) is known as Somigliana’s 
identity [9]: 

∫∫
ΓΓ

Γ=Γ+ dpudupu klkklk
i
l

**  (6) 

Where *
lku  and *

lkp represent the fundamental solutions of displacement and traction at 

any point in the k direction when a unit load is applied at ‘i’ in the l direction. p
r

 is 

traction vector. Γ is the boundary. When ‘i’ is taken to the boundary, equation 6 
transforms into: 
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In order to solve the integral equation numerically, the boundary will be discretized 
into a series of elements. We can start by defining the u

r
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Φ= . Ф is the interpolation function matrix of 

shape functions. To study curved elements first we need to define the way in which 
we can pass from the global Cartesian system {x, y, z} to the local system {ξ1 , ξ2, η} 
defined over the element, where ξ1 , ξ2 are oblique coordinates and η is in the direction 
of the normal. The Jacobian of transformation is 21 ξξ ddJd =Γ .  Equation 7 can now 

be written as:            
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It can also be expressed in matrix form as follows:           
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Where ijij HH ˆ= , if i ≠ j and iijij cHH += ˆ , if i=j.    
Somigliana’s identity gives the displacement at any internal point in terms of the 

boundary displacements ju
r

 and tractions jp
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 of each element:  
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2.3   Comparison of the Operation Counts 

In our algorithm, the H and G matrix only need to be calculated once in analyzing 
image sequences. Then displacements of any internal point at any frame can be 
computed by the equation 9 and 10 which don’t need much computation time. For a 
L-sequence problem with N boundary nodes and M internal nodes, the operation 
counts of BEM and FEM are O(N3)+O(M3)+O(L(NM)) and O(L(N+M)3), 
respectively. Therefore, the BEM is computationally more efficient than the FEM, 
especially when we analyze image sequences.  

2.4   Implementation 

Feature Point Extraction:  Not all points in images are suitable candidates for 
tracking. We choose our feature points as follows: 1) to stabilize curvature values, 
discard the points whose edge strength L∇  is less than a threshold; 2) thin the wide 

ridges resulting from the previous step by nonmaximum suppression [12] and 3) 
choose the resulting local maxima as the final candidate points to track.  

Fundamental Solutions for Elastic Problem: In isotropic elastic materials, the 
fundamental solutions are known in exact closed form as shown in equation 11 and 12 
[9]. In anisotropic analysis, the closed form of a fundamental solution is hard to get 
and calculation becomes very time-consuming. However, by using the Wilson & 
Cruse interpolation scheme, computation time is almost the same. (See [13]). For the 

3D isotropic elastic problem, the fundamental solutions of displacement *
lku and 

traction *
lkp are: 
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Where r  is the distance between the loading point to any point under consideration. 
Notice that lr,  is the derivative of the r in the l direction. ln  and kn  are the direction 

cosines of the normal with respect to l and k direction. In this paper, we used µ = 
17857.1 and ν = 0.4 for the LV myocardium.  

Strain tensor definition: Given a strain tensor E (a 33× matrix) which is computed in 
the Cartesian coordinate system of {x, y, z}. We can transform it to a local coordinate 
system {ξ1, ξ2, η}. First construct the 33× rotation matrix R which results in {x, y, z} 
→ {ξ1, ξ2, η}. Using this matrix R we can write the E in the local coordinate system 
as: 'RERElocal = . In this paper, the local coordinate system is defined by the 

circumferential, radial, and longitudinal axis at the epicardium. 
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Fig. 1. (a) Original 3D MRI Data in the Orthogonal-slice view, (b) Boundary displacement 
results for one of its 2D slices obtained using G-RPM, (c) 3D BEM mesh using bilinear 
element, (d) Dense displacement results for one 2D slices through the 3D results. 

3   Experimental Results 

4D MR canine cardiac datasets were analyzed using our new algorithm. An example 
of the results from one of our datasets was shown in figure 1. For each dataset, strains 

were calculated between 
end-diastole (ED) and end-
systole (ES). The resulting 
3D-derived radial strains 
(Err) and Circumferential 
strains (Ecc) of one dataset at 
frame 1, 3, 4 and 6 were 
illustrated in figure 2. Frame 
1 was at ED and Frame 6 
was at ES. Note the normal 
behavior in the LV, showing 
positive radial strain 
(thickening) and negative 
circumferential strain 
(shortening) as we move 
from ED to ES. 

3.1   Comparisons with Implanted Markers 

To further quantitatively validate resulted motion trajectories, we used four canine 
MRI datasets with implanted markers for point-by-point displacement comparison 
(see [6] for more details on the marker implantation and localization.). The mean 
displacement errors of FEM, BEM and EFFD methods were illustrated in the figure 3.  
It can be seen that FEM-based models show the smallest error while the EFFD 
approach shows the largest. 

3.2   Comparisons Between FEM and BEM, FEM and EFFD 

In order to see the difference between the B-Spline based deformation model and the 
biomechanical model, we compared strain results obtained using FEM, BEM and 

 

Fig. 2. Err (Top) and Ecc (Bottom) between ED (frame 1) to 
ES (frame 6) of dataset 1 

(a) (b) (c) (d) 
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EFFD. The strains were calculated between ED to ES using BEM, FEM and EFFD, 
respectively. The comparisons of strain results between FEM and BEM, FEM and 
EFFD for 4 canine image sequences are illustrated in the figure 3. The mean 
differences of Ecc, Err and Ell between FEM and BEM were less than 1.3%, 4.05% and 
4.24%, while the mean differences of Ecc, Err and Ell between FEM and EFFD were 
about 3 times higher. These results show that the BEM came closer to the FEM model 
which we presume to be more physically realistic than the EFFD. EFFD is a powerful 
tool for modeling deformable objects with arbitrary geometries but it may not be able 
to fully approximate the physical properties of LV. 

 

Fig. 3. Absolute displacement error vs. 
implanted markers. The motion is 
estimated between ED to ES and 
compared by the FEM, BEM and 
EFFD. Blue: Error of FEM; Green: 
Error of BEM; Red: Error of EFFD 

 

Fig. 4. Comparisons of 
strains between FEM 
and BEM, FEM and 
EFFD: Blue: Mean 
difference between the 
strain results obtained 
by FEM and BEM. Red: 
Mean difference 
between the strain 
results obtained by FEM 
and EFFD. 

4   Conclusions and Future Work 

We conclude that the BEM-based algorithm presented in this paper is both 
computationally efficient and physically realistic for the following reasons: 1) Only 
rough boundary segmentation is required in the first frame; 2) Only the discretization 
of surface is required; 3) The fundamental solution matrix only needs to be calculated 
once in analyzing image sequences; and 4) The deformation is estimated by a 
biomechanical model of the myocardium. In this paper, by comparing displacement 
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results using implanted markers, we identified that the FEM has the least errors, while 
the BEM is the second and EFFD has the larget error. We also found that the 
difference of strain results using EFFD has larger differences from a FEM approach 
than the newer BEM-based approach. Further extensions to this work could be using a 
more complicated biomechanical model, which incorporates the fiber directions of LV.  
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