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Abstract. In this paper, we propose a new dynamic learning frame-
work that requires a small amount of labeled data in the beginning, then
incrementally discovers informative unlabeled data to be hand-labeled
and incorporates them into the training set to improve learning perfor-
mance. This approach has great potential to reduce the training expense
in many medical image analysis applications. The main contributions lie
in a new strategy to combine confidence-rated classifiers learned on dif-
ferent feature sets and a robust way to evaluate the “informativeness”
of each unlabeled example. Our framework is applied to the problem of
classifying microscopic cell images. The experimental results show that
1) our strategy is more effective than simply multiplying the predicted
probabilities, 2) the error rate of high-confidence predictions is much
lower than the average error rate, and 3) hand-labeling informative ex-
amples with low-confidence predictions improves performance efficiently
and the performance difference from hand-labeling all unlabeled data is
very small.

1 Introduction

In many learning algorithms in medical image analysis, the labeling of training
data is often done manually. This process is quite time-consuming since a large
set of training data is usually required. However, not all labeled data have the
same level of effectiveness in improving a classifier. As in Support Vector Ma-
chines [1], only those “support vectors” that are located near the boundaries of
different classes are the informative data that affect the final classifier. Hence if
we can discover this type of “support vectors” in the unlabeled data, then we
need only label these discovered informative data, include them in the training
set and re-train the classifier. In this way, the amount of data to be labeled is
greatly reduced without sacrificing the learning performance. In our approach
we consider the confidence-rated classifiers that can predict a probability distri-
bution over the labels for an example since the probability distribution enables
us to determine the “informativeness” of the example.
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A single confidence-rated classifier, however, is often insufficient because in
many medical images, multiple sets of features have very different characteristics
and can not be effectively combined in a single classifier. For instance, image fea-
tures are often grouped into different categories such as shape and texture. These
feature sets have independent bases, and simply concatenating them into a single
feature vector produces a complex, unstructured feature space that can poten-
tially degrade learning and classification performance. To tackle this problem, in
this paper we train separate confidence-rated classifiers on each category of fea-
tures and then combine the predictions using Bayes rule, assuming conditional in-
dependence between classifiers trained on different feature sets. The classical vot-
ing classification algorithms, such as Bagging [2, 3] and AdaBoost [4, 5], are suc-
cessful in improving the accuracy by combining multiple weak classifiers. Bauer
and Kohavi [6] gave an empirical comparison of voting classification algorithms.
However, these voting classification algorithms are generally applied to classifiers
that just assign a label (not a probability) to an instance. Schapire and Singer [7]
proposed new boosting algorithms using confidence-rated predictions, however,
their extension to multi-class classification problems is not so straightforward.
The new approach proposed in this paper for combining multiple confidence-
rated classifiers based on Bayes rule efficiently addresses these problems.

Since our combining rule produces probability distributions over all labels for
an unlabeled example, the predicted probabilities can be used to determine the
“informativeness” of the example. Examples with high-confidence predictions
are less informative than those with low-confidence predictions in improving
the classifier. Hence it is more efficient to hand-label only those examples with
low-confidence predictions. A classical method in the literature that improves
learning by using unlabeled data is the co-training method [8, 9]. The basic idea
is to organize the features of training examples into two different feature sets,
and learn a separate classifier on each feature set. There are two assumptions
in co-training. First, the two feature sets are redundant but not completely cor-
related. Second, each feature set would be sufficient for learning if enough data
were available. Under these assumptions, the high-confidence predictions of one
classifier on new unlabeled examples are expected to generate informative exam-
ples to enrich the training set of the other. However, these formal assumptions
may not hold in many medical image applications that tend to have high com-
plexity and dimensionality. In this paper, instead of trusting that each feature
set is sufficient for learning, we determine the high-confidence predictions for
new data by combining the opinions of all classifiers based on different feature
sets. Our approach can be applied to multi-class classification problems directly.

2 Data Description and Preprocessing

The data we use are microscopic cell images. Each image consists of lots of cells
in different developmental stages. The goal is to classify the cells into different
stages and count the number of cells in each developmental stage. This problem
has wide applications in the pharmaceutical industry for therapy evaluation.
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(a) (b)

(c) (d) (e)

Fig. 1. (a) Cell image; (b) Segmented cell image; (c,d,e) are cells in developmental
stage 0, 1 and 2 respectively

We first segment out the individual cells of interest. Since the cell nuclei are
usually the brightest and cover a certain amount of area, we locate all cell nuclei
by thresholding at a high intensity value and applying connected component anal-
ysis. Then we locate the regions occupied by all cells by thresholding the original
image at a low intensity value. We apply dilation on all cell nuclei in the cell re-
gions simultaneously until all cells are fully segmented. Finally we extract useful
features from each cell for the purpose of classification. There are two categories
of features: 1) binary image features, including roundness, eccentricity, solidity,
extent and the diameter of a circle with the same area as the region; 2) gray im-
age features, including mean and standard deviation of the gray level intensity. In
the training phase, we first label a small set of cells from different developmental
stages by hand, and include them in the initial training data set. The labels de-
note the different developmental stages. There are three developmental stages in
our experiments (Fig. 1): 0 - beginning; 1 - immature; 2 - mature.

Because the hand-labeling phase is tedious and time consuming, the initial
labeled training set we can acquire is limited. Our methodology is to tackle this
problem by strategically adding unlabeled data into the training data set based
on the evaluation of the unlabeled data using a confidence-rated classification
mechanism. The proposed mechanism is described in the next sections.

3 Learning Framework

Our learning framework is outlined by the flowchart in Fig. 2. In the frame-
work, we train multiple confidence-rated classifiers on separate groups of fea-
tures. When presented with unlabeled data, each classifier produces a confidence
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rate of its own prediction. Turney et al. [10] has argued that opinions from in-
dependent modules should be combined multiplicatively. We extend this idea to
combine predictions of classifiers trained on different feature sets.

3.1 Combining Confidence-Rated Classifiers Using Bayes Rule

Our combining approach is to apply Bayes rule to evaluate the final confidence
rate based on the confidence rates given by the multiple, independent classifiers.
Suppose we have n classifiers, m labels, and classifier i is trained on the feature
set i. pi

j (i = 1, . . . , n, j = 1, . . . , m) denotes the probability that classifier i
assigns label j to an input unlabeled example. Lj denotes that the label of an
example is j. Let Ci = (pi

1, p
i
2, . . . , p

i
m), pj = Pr(Lj). Using Bayes rule, we have

Pr(Lj |C1, C2, . . . , Cn) =
Pr(C1, C2, . . . , Cn|Lj)Pr(Lj)

Pr(C1, C2, . . . , Cn)
(1)

Assuming conditional independency of C1, C2, . . . , Cn, we have

Pr(Lj |C1, C2, . . . , Cn) ∝ Pr(C1|Lj)Pr(C2|Lj) . . . P r(Cn|Lj)Pr(Lj) (2)

Since Pr(Ci|Lj) = Pr(Lj|Ci)Pr(Ci)
Pr(Lj)

, Eq. 2 can be rewritten as

Pr(Lj |C1, C2, . . . , Cn) ∝ Pr(Lj)
n∏

i=1

Pr(Lj |Ci)
Pr(Lj)

(3)



Efficient Learning by Combining Confidence-Rated Classifiers 749

Table 1. The difference between our approach with näıve Bayes classifier

Known Pr(Lj |O1, . . . , Oq) ∝
näıve Bayes classifier Pr(Oi|Lj) Pr(Lj)

∏q
i=1 Pr(Oi|Lj)

Our approach Pr(Lj |Ci) Pr(Lj)
∏n

i=1
Pr(Lj|Ci)

Pr(Lj)

Using our abbreviated notation, Eq. 3 can be simplified as

Pr(Lj |C1, C2, . . . , Cn) ∝ pj

n∏

i=1

pi
j

pj
(4)

The above formula intuitively says that if the predicted probability pi
j is greater

than (equal to, less than) the prior probability pj , then this prediction will
increase (not affect, decrease) the final probability given to label j. The following
theorem relates our approach to näıve Bayes classifier.

Theorem 1. If Classifier i, i = 1, . . . , n are themselves näıve Bayes classifiers
using disjoint feature sets, then the combined classifier is a näıve Bayes classifier
using all features.

Proof. Suppose the feature sets are φ = {φi, i = 1, . . . , n} and each classifier Ci

is a näıve Bayes classifier based on the feature set φi. Then we have:

Pr(Lj |Ci) ∝ Pr(Lj)
∏

α∈φi

Pr(α|Lj) (5)

Pr(Lj |C1, C2, . . . , Cn) ∝ Pr(Lj)
n∏

i=1

Pr(Lj |Ci)
Pr(Lj)

∝ Pr(Lj)
n∏

i=1

∏

α∈φi

Pr(α|Lj)

∝ Pr(Lj)
∏

α∈φ

Pr(α|Lj) (6)

Hence each classifier can be viewed as a mapping from a set of concrete
features to a single abstract feature (a probability distribution over all labels).
Our combining approach then predicts the final classification using Bayes rule on
these abstract features. Denote the observation on feature i, i = 1, . . . , q as Oi. In
table 1, we compare our combining approach with the näıve Bayes classifier. Our
combining approach does not assume any particular class-conditional density
model as the näıve Bayes classifier does for the continuous variables. Instead
base classifiers trained on different feature sets are applied to generate probability
distributions over the labels for an example.

3.2 Exploring the Unlabeled Data

Once we have acquired the combined probability distribution over an unlabeled
example, we can use it to determine the “informativeness” of this example.



750 W. He et al.

The intuition behind our approach is that not all unlabeled data have equal
effectiveness in improving the classifier. For example, in SVM only the support
vectors are used in determining the final classifier. If we know those support
vectors, it would suffice to label only those data and train the classifier on them.
So our strategy is to find those potential “support vectors”, and present them
only for hand-labeling. In this way, the amount of human efforts needed to
acquire a large labeled training set is greatly reduced.

We notice that the support vectors are near the boundaries between two
classes. And the classifier does not predict well their labels. So, the probabilities
given by the classifier can be used to discover those informative unlabeled data. If
the predicted probability that one unlabeled example belongs to a certain class
is high, we include this example along with the predicted label directly into
the training set. However, these data may only enlarge the training set without
helping much to improve the classifier. On the other hand, if the probability of an
unlabeled example belonging to any class is below some threshold, the current
classifier is uncertain about the label of this example. Therefore, this type of
data is most probably lying around the boundary between two classes. Hand-
labeling these data that the current classifier is uncertain about and adding them
into the training set will most efficiently improve the classifier. In this way, by
quantitatively evaluating the relationship between the unlabeled data and the
current classifier, we only need to label those “most profitable” unlabeled data
without sacrificing much in performance.

4 Experiments

We tested our algorithm by collecting our data from 40 microscopic cell images,
each containing about 50 cells of all developmental stages after segmentation. We
classify the cells into 3 developmental stages: beginning, immature and mature.
For each segmented cell, we extract two separate sets of features: one related to
shape and geometry using the thresholded binary image, and the other related
to intensity statistics based on the gray-level image. The multi-class logistic
regression [11] classifier is applied on the binary and gray feature sets separately
and we get two probability distributions for each unlabeled cell example. However
our learning framework does not assume any specific base learning method. We
choose logistic regression since it can predict a probability distribution and can
be applied to a wide variety of situations as long as the difference between the
logarithms of the class-conditional density function is linear in the variables.

In the first experiment, we compare our Bayesian combination approach
which takes into account the prior probability of each class with multiplicative
combination that does not consider the prior probabilities. The label we assign
to an example is the label with the highest predicted probability. In table 2, we
can see that combining the predictions without unlabeled data using Bayes rule
is better than just simply multiplying the probabilities without considering the
prior probability of each class. In each run, the prior probabilities are estimated
from the training set (randomly selected 35 labeled examples). We expect that
the performance gain would be greater if more feature sets were combined.
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Table 2. Prediction accuracy without unlabeled data (average over 20 runs)

Binary features Gray features Multiplicative combination Bayesian combination
81.1% 69.7% 79.3% 81.7%

Table 3. Prediction accuracy (a) with just initial 35 training data; (b) with hand-
labeled “informative” unlabeled data, along with the number of such data; (c) with all
100 unlabeled data hand-labeled

runs (a) (b) (c)
1 78.6% 91.1% (24) 92.9%
2 78.6% 83.9% (16) 83.9%
3 80.3% 82.1% (30) 83.9%
4 82.1% 83.9% (31) 85.7%
5 82.1% 87.5% (14) 87.5%

In the second experiment, we examine whether the confidently predicted un-
labeled data are really correctly labeled and compute the proportion of this type
of data among all unlabeled data. The result depends on the threshold applied on
the combined probability. In this experiment, if the predicted probability of one
example belonging to one class is higher than 90%, then we treat this example as
a confidently predicted example. Over 20 runs, the percentage of the confidently
labeled data over all unlabeled data is 60.9%. The average prediction accuracy
for those confidently labeled data is 92.3%, which is much higher than the aver-
age prediction accuracy (81.7%). However if a higher labeling accuracy for the
added unlabeled data is required, we need to increase the threshold, which will
decrease the percentage of confidently labeled data. So there is a tradeoff here
and the choice of the threshold depends on the application.

Finally, we show that hand-labeling a few informative examples with low-
confidence predictions efficiently improves performance, and that the perfor-
mance difference is small between hand-labeling the few informative examples
and hand-labeling all unlabeled data. Similarly we need to set a threshold. In
this experiment, if the maximal predicted probability of one example belonging
to any class is lower than 80%, then we treat this example as an ambiguous
example to the current classifier and we need to label it by hand. In table 3, we
can see that, over five runs, the numbers of such ambiguous (i.e. “informative”)
unlabeled examples are 24, 16, 30, 31 and 14, which are much less than the total
number of unlabeled examples (100). By labeling only this reduced number of
unlabeled data, however, we achieve a performance that is comparable to that
by labeling all unlabeled examples.

5 Discussions and Conclusions

In this paper, we have presented a Bayesian strategy for combining confidence-
rated predictions of classifiers trained on different feature sets. Our method gen-
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erates a probability distribution over the labels for an unlabeled example. We
utilize these probability distributions to filter out two groups of unlabeled data.
One group is the confidently labeled data. We add them directly into the training
set. Compared to the co-training method, our approach combines the opinions
from different classifiers to ensure that the self-labeled data are correct with
very high probability. The other group of the filtered unlabeled data includes
those potentially informative examples for whose labels the current classifier is
uncertain. By hand-labeling only these informative data, we achieve comparable
performance with hand-labeling all data. This results in greatly reduced training
expense. Therefore the training phase of our method is not static, but dynamic.

References

1. Cristianini, N., Shawe-Taylor, J.: Support Vector Machines and other kernel-based
methods. Cambridge University Press (2000)

2. Breiman, L.: Bagging predictors. Machine Learning 26 (1996) 123–140
3. Quinlan, J.R.: Bagging, boosting, and C4.5. In: Proc. AAAI-96 Fourteenth Na-

tional Conf. on Artificial Intelligence. (1996) 725–730
4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences 55
(1997) 119–139

5. Schapire, R.E.: A brief introduction to boosting. In: Proc. of 16th Int’l Joint Conf.
on Artificial Intelligence. (1999) 1401–1406

6. Bauer, E., Kohavi, R.: An empirical comparison of voting classification problems:
Bagging, boosting and variants. Machine Learning 36 (1999) 105–142

7. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37 (1999) 297–336

8. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Proc. of the 1998 Conf. on Computational Learning Theory. (1998) 92–100

9. Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual dectectors
using co-training. In: Proc. of the Int’l Conf. on Computer Vision. (2003) 626–633

10. Turney, P., Littman, M., Bigham, J., Shnayder, V.: Combining independent mod-
ules to solve multiple-choice synonym and analogy problems. In: Proc. of the Int’l
Conf. on Recent Advances in Natural Language Processing. (2003) 482–489

11. Anderson, J.A.: Logistic discrimination. In Krishnaiah, P.R., Kanal, L.N., eds.:
Handbook of Statistics 2. (1982) 169–191


	Introduction
	Data Description and Preprocessing
	Learning Framework
	Combining Confidence-Rated Classifiers Using Bayes Rule
	Exploring the Unlabeled Data

	Experiments
	Discussions and Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




