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Abstract. Emphysema is characterized by the destruction and over distension
of lung tissue, which manifest on high resolution computer tomography (CT)
images as regions of low attenuation. Typically, it is diagnosed by clinical symp-
toms, physical examination, pulmonary function tests, and X-ray and CT imag-
ing. In this paper we discuss a quantitative imaging approach to analyze emphy-
sema which employs low-level segmentations of CT images that partition the data
into perceptually relevant regions. We constructed multi-dimensional histograms
of feature values computed over the image segmentation. For each region in the
segmentation, we derive a rich set of feature measurements. While we can use
any combination of physical and geometric features, we found that limiting the
scope to two features – the mean attenuation across a region and the region area
– is effective. The subject histogram is compared to a set of canonical histograms
representative of various stages of emphysema using the Earth Mover’s Distance
metric. Disease severity is assigned based on which canonical histogram is most
similar to the subject histogram. Experimental results with 81 cases of emphy-
sema at different stages of disease progression show good agreement against the
reading of an expert radiologist.

1 Introduction

Emphysema is a widespread chronic respiratory disorder, characterized by the loss of
lung recoil resulting from the deterioration of lung tissue, which leads to physical lim-
itations. The destruction and over-distension of lung tissue in emphysema are manifest
on high resolution computer tomography (CT) images as regions of low attenuation, as
seen in Fig. 1. While physicans are trained to identify such regions, it is often difficult to
accurately quantify the extent of the disease severity, and both intra- and inter-operator
variability is common [1]. Thus a variety of computer aided methods have been devel-
oped to automatically detect and quantify the extent of disease severity.

An early technique for measuring the amount of tissue degradation in the lung
parenchyma is the Müller density index [2]. This technique calculates the percentage of
the pixels in the lung field that have low attenuation. A global threshold defines what
is considered low attenuation. This threshold must be set in a manner that takes into
account variations in attenuation due to differences in scanners, scanning protocols,
patient size, and the patients’ ability to inflate their lungs.

While the Müller density index provides insight into the percentage of the lung that
may be degraded by the disease, the interpretation is based strictly on the percentage of
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Fig. 1. The image on the left shows a CT scan of a healthy subject, which can be compared to
the image of a severely emphysematous subject, shown on the right. The two diagnosis were
established by and expert pulmonologyst.

low attenuation pixels and uses no information on the spatial distribution or grouping of
the low attenuation pixels. Another method of analyzing the degree of lung degradation
uses the fractal dimension of the low attenuation areas. The cumulative size distribution
of the low attenuation areas has been shown to follow a power law relationship - with
healthy subjects and emphysematous subjects having markedly different cumulative
size distributions [3].

Coxson provides another extension to the Müller density index [4]. Here, the CT
pixel values are converted to local measures of specific volume. This facilitates an in-
terpretation of the volume of gas per mass of tissue in the lung parenchyma. Since
emphysema manifests as a degradation of tissue (loss of mass) and a loss of elastic
recoil (gain of volume), subjects with emphysema have higher volume of gas per unit
mass ratios than healthy subjects.

Finally, emphysema has been analyzed using standard statistical pattern analysis
approaches. The adaptive multiple feature method (AMFM) of Uppaluri [5] divides an
image into a regular grid of regions and generates a series of derived measurements
or features for each grid square. The features generated include local histograms, co-
occurrence matrices, run length frequencies, and fractal attributes. Disease severity is
determined using a Bayesian classifier on this large feature space. A main disadvantage
of this approach is that the classifier must be manually trained with an expert assigning
a classification to each grid square in each image in the training set. While the previous
techniques looked at the percentage and distribution of low attenuation regions, the
AMFM approach utilizes a richer feature set, in essence using more of the information
present in the CT data.

The quantification approach presented here incorporates some of the previous tech-
nologies, extends others, and introduces new approaches for analyzing emphysema. In
the following sections we will describe our classification technique in more detail and
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provide quantitative results. Section 2 describes the segmentation and feature selection
approach. Section 3 describes the metrics used for histogram comparison, and section
4 provides results computed on a dataset of CT volumes. Finally, in section 5 we will
draw conclusions.

2 Feature Selection

In the problem of quantifying emphysema severity, a good deal is known about the data
being analyzed, both in terms of anatomic characteristics of the lung and the physics
of the scanner. This knowledge is incorporated in our feature extraction model, which
includes both signal and shape models, to achieve the highest detection rates. These
feature extraction methods are similar to those presented in [6].

In CT imagery, the signal models represent the blurring (point spread function) and
noise characteristics inherent to the imaging system. These models permit the accurate
detection of primitive events in the image such as intensity peaks and discontinuities.
These primitives form the basis for our method’s shape representation.

The first stage of shape representation consists of step-edge detection using the
Canny edge detector [7]. To account for noise, each image slice is convolved with a
two-dimensional Gaussian kernel in which the scale of the kernel can be optimally
computed from the point spread function of the scanner [8].

After edge detection we seek to capture the appearance of features in the image in
terms of their intensity and shape. This representation is formed by grouping the low-
level features detected at the signal level. The edges from the preceding signal modeling
stage are grouped into closed regions by tracing along the edges and following a path
perpendicular to the edge gradient until a closed structure can be formed. The result
is a connected network of vertices and edges delimiting adjacent image regions within

Fig. 2. Left: CT slice showing segmentation of the lung field. Right: close-up of the segmentation
showing individual regions over which statistics can be computed.
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which the voxel intensities are homogeneous [9]. The boundaries of these regions cor-
respond to underlying tissue morphology, so that, for example, a large emphysematous
area is represented by a single segmented region. Figure 2 illustrates a segmented CT
slice and shows individual regions over which statistics can be computed.

In our application, we extract a variety of features for each region including inten-
sity, area, number of edges, outer perimeter, diameter, intensity variance, min and max
intensity, and many others. Of these, the first two, intensity and area, were chosen for
histogram generation because they provide a logical characterization of disease sever-
ity. That is, as the severity of emphysema progresses, the lung tissue degrades, leading
to larger and darker tissue patches.

3 Histogram Comparison

Using the low-level segmentation of the lung region, we construct two-dimensional
histograms of area and mean intensity and compare these histograms to canonical his-
tograms for various stages of the disease. These histograms are rich in information
content. From these histograms, one can extract the percentage of the lung parenchyma
occupied by low attenuation regions as in the Müller density index or analyze the size
distribution of the low attenuation regions as in the fractal dimension approach. But the
information in the histograms is richer than either of those approaches since it includes
the size distributions for each attenuation value. Thus, in one representation you have
the size distributions for the healthy parenchyma regions, the severely diseased regions,
and the moderately diseased regions. The histograms are more relevant than the fea-
tures extracted in the AMFM method because they are aligned with image events and
not with an artificial grid.

To assess disease severity, we compare a subject’s two-dimensional histogram to
a set of canonical histograms. Each canonical histogram represents a different disease
severity level, and each is derived from patient scans assessed by an expert pulmo-
nologist, by averaging a set of histograms belonging to a given disease category as
established by the expert. In order to compare the canonical histograms with the fea-
ture histogram of a new case several techniques can be employed, such as Lp metrics,
chi-squre distance or Kullback-Leibler divergence. Motivated by the results in [10], we
use the Earth’s Movers Distance (EMD) as our metric. Intuitively, the EMD between
two histograms is the minimum amount work needed to “reshape” one histogram into
the other, normalized by the total amount of mass moved to perform the reshaping.
The EMD depends both on the amount of mass that has to be moved as well as on the
distance over which the transport occurs. In the situation when the distance between
histogram bins is a metric [11] and the histograms have the same mass, the EMD is
itself a metric. This is an important property in the application tackled here, since the
triangular inequality prevents a given histogram from being simultaneously close to two
others if those are themselves far apart. This should avoid the idiosyncratic situation in
which the disease level of a subject is simultaneously deemed as close to high and low,
as long as there is enough separation between these two classes themselves. In the cur-
rent work the distance between bins was chosen to be the Euclidean distance between
the bin locations.
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4 Experimental Results

We generated two-dimensional histograms of region intensity and area for 81 CT data
sets. Each data set was acquired with a GE scanner with 120 kVp, 1 mm slice thick-
ness, 20 mm interslice distance, 200 mA tube current, 0.5 sec rotation, and x and y
pixel spacing ranging from 0.547 mm to 0.813 mm. An expert pulmonologist examined
and classified each case as one of five emphysema levels ranging from 0 (no signs of
emphysema) to 4 (severe emphysema). The data sets were subgrouped as follows: 16
level 0 cases, 25 level 1 cases, 19 level 2 cases, 9 level 3 cases, and 12 level 4 cases.

For each case we constructed 400 × 400 two-dimensional histograms as described
in section 2. Intensity ranged from −1024 HU to −220 HU with a bin size of 2.01 HU.
Area ranged from 0 mm2 to 338 mm2 with a bin size of 0.8452 mm2. Figure 3 shows
area and intensity histogram marginals for a level 0 case and a level 4 case. Though the
area marginals are quite similar to one another, the difference in the intensity marginals
is clear.

We employed a bootstrapping technique to classify each of the 81 cases. That is, we
generated canonical histograms for each severity level while withholding the case to be
tested. Table 1 is a confusion matrix showing classification results. The rows indicate
the subject cases, and the columns indicate the level at which the case was classified. If
considering perfect classification, randomly choosing emphysema levels for each case
yields an accuracy of 20%. Table 1 indicates that 62% of the level 0 cases, 20% of the
level 1 cases, 21% of the level 2 cases, 33% of the level 3 cases, and 67% of the level 4
cases were perfectly classified, with a weighted kappa statistic of 0.468 (standard error
of 0.074) [12, 13].

It is interesting to observe that although the classification rates for levels 1, 2,and 3
are somewhat low, they tend to be misclassified as a similar emphysema level. There-
fore, if we instead consider a correct classification to be exact agreement or off-by-one
agreement, results improve substantially. This is not an unreasonable approach given
that cases with similar levels of severity have similar intensity and spatial characteris-

Fig. 3. Left: Area marginal histograms for a level 0 case and a level 4 case (bold). Right: Intensity
marginal histograms for a level 0 case and a level 4 case (bold).
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Table 1. Classification Confustion Matrix

Level 0 Level 1 Level 2 Level 3 Level 4

Level 0 10 2 2 0 2
Level 1 9 5 9 2 0
Level 2 3 4 4 7 1
Level 3 1 1 1 3 3
Level 4 0 0 0 4 8

tics. In this case, random classification is 52%. Table 1 indicates that 75% of the level 0
cases, 92% of the level 1 cases, 79% of the level 2 cases, 78% of the level 3 cases, and
100% of the level 4 cases were classified correctly.

5 Conclusion

Emphysema is a serious disease leading to extensive physical restrictions for many in-
dividuals. In this paper we demonstrated a completely automated method of measuring
emphysema severity. It is based on the observation that emphysema manifests in CT
as large regions of low attenuation, properties captured on a two-dimensional joint his-
togram of the area and intensity of segmented regions in the lung parenchyma. We
showed that our algorithm yields results in good agreement with manual classifications
of an expert pulmonologist.

The automation of severity quantification addresses the issue of human intra- and
inter-observer variability. Inter-observer agreement on emphysema scores for radiolo-
gists with varying degrees of expertise was reported in [1], with kappa values in the
range of 0.431 to 0.589. The weighted kappa value for our algorithm (0.468) compares
well with the range of values given in that work.

Although the results reported here are encouraging, improvements can be gained
by employing more sophisticated classification schemes. In particular, we should con-
sider a method that takes the variance of the histograms into account. Additionally,
we chose features (mean intensity and area) based on clinical significance. However,
because we compute a rich set of features for each segmented region, it would be inter-
esting to validate this choice using a statistical feature selection technique. In principle
three-dimensional segmentations would provide a more faithful representation of the
true anatomical scenario. However, the imaging protocol may preclude accurate 3D
segmentations owing to large interslice distances.
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