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Abstract. Automatic diagnosis of lung nodules for early detection of
lung cancer is the goal of a number of screening studies worldwide. With
the improvements in resolution and scanning time of low dose chest CT
scanners, nodule detection and identification is continuously improving.
In this paper we describe the latest improvements introduced by our
group in automatic detection of lung nodules. We introduce a new tem-
plate for nodule detection using level sets which describes various physi-
cal nodules irrespective of shape, size and distribution of gray levels. The
template parameters are estimated automatically from the segmented
data (after the first two steps of our CAD system for automatic nodule
detection) – no a priori learning of the parameters density function is
needed. We show quantitatively that this template modeling approach
drastically reduces the number of false positives in the nodule detection
(the third step of our CAD system for automatic nodule detection), thus
improving the overall accuracy of CAD systems. We compare the per-
formance of this approach with other approaches in the literature and
with respect to human experts. The impact of the new template model
includes: 1) flexibility with respect to nodule topology – thus various
nodules can be detected simultaneously by the same technique; 2) au-
tomatic parameter estimation of the nodule models using the gray level
information of the segmented data; and 3) the ability to provide ex-
haustive search for all the possible nodules in the scan without excessive
processing time – this provides an enhanced accuracy of the CAD system
without increase in the overall diagnosis time.

1 Introduction

Lung cancer screening is a major research activity worldwide. The goal is to
design a CAD system that will contribute to early diagnosis of lung cancer,
a major cause of death in various parts of the world. The work of our group
uses helical low dose thin slice (2 mm – 2.5mm) chest CT scanning (LDCT)
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which provides very high spatial, temporal, and contrast resolution of anatomic
structures. Automated detection of lung nodules in thoracic CT scans is an
important clinical challenge, especially because manual analysis by a radiologist
is time-consuming and may result in missed nodules. Furthermore, the amount
of image data to be analyzed continues to increase. We will not attempt an
exhaustive search on this subject because of the enormous size of literature on
early diagnosis of lung cancer, thus we will limit our scope to the image analysis
aspect of the CAD research on this subject. Specifically, we will focus on the
automatic detection and identification of lung nodules from the LDCT scanning.
Only sample studies will be referred to below as they pertain to our work.

Most of the CAD work in lung cancer screening involves two-stage detection
of lung nodules, such that initial candidate nodules are first selected and then
the false ones, called false positive nodules (FPNs), are partially eliminated while
preserving the true positive nodules (TPNs). For example, the conformal nodule
filtering [1] or unsharp masking [2] enhance nodules and suppress other struc-
tures at the first stage in order to separate the candidates from the background
by simple thresholding. To improve the separation, the background trend is cor-
rected within image regions of interest [3]. A series of 3D cylindrical and spherical
filters are used to detect small lung nodules from high resolution CT images [4].
Circular nodule candidates are detected by template matching [2, 5, 6] or other
pattern recognition techniques such as fuzzy clustering [7], linear discriminant
functions [8], rule-based classification [9], and patient-specific a priori model [10].
Also, cylindrical vascular models are used along with spherical nodular ones to
amplify the template matching [11].

The FPNs are excluded at the second stage by feature extraction and clas-
sification [12, 13]. Such features as circularity, size, contrast [12], or local cur-
vature [13] are extracted by morphological techniques, and artificial neural net-
works (ANN) are frequently used as post-classifiers [14].

Our CAD system detects the nodules in LDCT images in three main steps:
1) segmentation of the raw scanning information to isolate the lung tissues from
the rest of the structures in the chest cavity [Figs. 1(a) and (b)]; 2) extraction
of the 3D anatomic structures (e.g., blood vessels, bronchioles, alveoli, etc., and
possible abnormalities) from the already segmented lung tissues [Fig. 1(c)]; and
3) identification of the nodules by isolating the true nodules from other extracted
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Fig. 1. First two segmentation steps: (a) an initial LDCT slice, (b) separated lung
regions, (c) extracted objects (a nodule candidate is encircled), and (d) an empirical
marginal gray level distribution for the objects (here, the gray range is [98, 255])
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structures. The first two steps considerably reduce the search space by using
segmentation algorithms based on representing each CT slice as a sample of
a Markov–Gibbs random field of region labels and gray levels. Details of the
algorithms are presented in [15].

In this paper we focus on the third step that detects and classifies the nodules
among the extracted 3D structures. Both the nodules and normal objects have
almost the same marginal gray level distributions similar to that in Fig. 1(d) for
all the extracted objects in Fig. 1(c). Therefore, segmentation based solely on
gray level distribution (e.g, thresholding) will not work; we need to include geo-
metrical/shape information in this process. The approach proposed in this paper
includes a 3D deformable nodule prototype combined with a central-symmetric
3D intensity model of the nodules. The model closely approximates an empiri-
cal marginal probability distribution of image intensities in the real nodules of
different size and is analytically identified from the empirical distribution.

2 Detecting Lung Nodules with Deformable Prototypes

The detection step extracts, by shape and intensities, and classifies the nodule
candidates among all the 3D objects selected at the second segmentation stage.

2.1 Deformable Prototype of a Candidate Nodule

To extract the nodule candidates among the already selected objects like those in
Fig. 1(c), we use the deformable prototypes generated by level sets [16] that have
become a powerful segmentation tool in recent years. The evolving prototype’s
surface at time instant t◦ is a propagating zero-level front φ(x, y, z, t◦) = 0 of
a certain 4D scalar function φ(x, y, z, t) of 3D Cartesian co-ordinates (x, y, z)
and time t. Changes of φ in continuous time are given by the partial differential
equation:

∂φ(x, y, z, t)
∂t

+ F (x, y, z)|∇φ(x, y, z, t)| = 0 (1)

where F (x, y, z) is a velocity function and ∇ =
[

∂
∂x , ∂

∂y , ∂
∂z

]T
. The scalar velocity

function controlling the front evolution depends on local geometric properties,
e.g. a local curvature, k(x, y, z), of the front, and on local input data parameters,
e.g. a 3D gradient, ∇I(x, y, z), of the segmented 3D image I.

In practice, the difference relationship replaces Eq. (1) and each next value
φ(x, y, z, tn+1) relates to the current one φ(x, y, z, tn) at respective time instants
tn+1 and tn such that tn+1 − tn = �t; n = 0, 1, . . ., as follows: φ(x, y, z, tn+1) =
φ(x, y, z, tn) − �t · F (x, y, z)|∇φ(x, y, z, tn)|. The velocity function F plays a
major role in the propagation process. Among variants in [17, 18], we have cho-
sen F (x, y, z) = −h(x, y, z)(1 + εk(x, y, z)) where h(x, y, z) and ε are a local
consistency term and a smoothing factor, respectively. Since the level set for a
segmented 3D image I can always be initialized inside an object, an appropri-
ate consistency term to evolve faster to the object boundary can be as follows:
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(a) (b) (c)

Fig. 2. Part of the separated 3D lung objects (a), the initialized level set (b) indicated
by red color, and the finally extracted potential nodule candidate (c)

h(x, y, z) = (1 + |∇I(x, y, z)|)−1. To keep the level set front from propagating
through blood vessels to which the nodules may be connected, we apply a low-
pass filter after each propagation step n. Figure 2 shows results of extracting
a potential nodule candidate with the deformable prototype. To check whether
the extracted object is really a nodule candidate, we should measure similarity
between grayscale patterns in the extracted part of the initial 3D image and the
intensity prototype of the nodule of that shape.

2.2 Similarity Measure for Grayscale Nodule Prototypes

Analysis of abnormalities in real 3D LDCT slices suggests that gray levels in
central cross-sections of a solid-shape 3D nodule or in a solid-shape 2D nod-
ule roughly follow a central-symmetric Gaussian spatial pattern such that the
large central intensity gradually decreases towards the boundary. Moreover, the
marginal gray level distributions for all 3D objects separated from the lung tis-
sues at the second segmentation stage (e.g. arteries, veins, bronchi, or nodules
of different size) are very similar to each other. The 3D Gaussian intensity pat-
tern in each grayscale nodule prototype ensures that the marginal gray level
distribution closely approximates the empirical one for each real nodule in the
LDCT data.

Let the prototype be a central-symmetric 3D Gaussian of radius R with the
maximum intensity qmax in the center so that the gray level q(r) at any location

(x, y, z) at radius r =
(
x2 + y2 + z2

) 1
2 with respect to the center (0, 0, 0) is given

by the obvious relationship:

q(r) = qmax exp
(
− (r/ρ)2

)
; 0 ≤ r ≤ R (2)

The scatter parameter ρ in Eq. (2) specifies how fast the signals decrease
towards the boundary of the prototype. The maximum gray level, qmax = q(0),
and the minimum one, qmin = q(R), on the boundary of the spherical Gaussian
prototype of the radius R uniquely determine this parameter as follows:

ρ = R (ln qmax − ln qmin)−
1
2 (3)
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Because all the prototype’s points with a fixed gray value q in the continuous
interval [qmin, qmax] are located at the spherical surface of the radius r(q) =
ρ (ln qmax − ln q)

1
2 , their density is proportional to the surface area 4πr2(q).

Therefore, the marginal probability density function for such a prototype is
ψ(q) = γr2(q) where γ is the normalizing factor such that

∫ qmax

qmin
ψ(q)dq = 1. It

is easily shown that this function has the following closed form:

ψ(q|qmin, qmax) =
ln qmax − ln q

qmax − qmin (1 + ln qmax − ln qmin)
(4)

The gray level parameters qmax and qmin are estimated from the empirical
marginal distribution for each segmented 3D object, e.g. qmax = 255 and qmin =
98 for the objects extracted in Fig. 1.

To evaluate similarity, the gray level nodule prototype is centered at the
centroid of the volume extracted with the deformable prototype.

2.3 Lung Nodule Detection Algorithm

1. Separate lung regions from a given CT scan using the segmentation algo-
rithms in [15]; see an example in Fig. 1(b).

2. Separate arteries, veins, bronchi, bronchioles, and lung nodules (if they exist)
from the above lung regions using the same segmentation algorithms in [15];
see an example in Fig. 1(c).

3. From the empirical marginal gray level distribution for the objects separated
at Step 2 calculate qmin and qmax; see an example in Fig. 1(d).

4. Stack all the voxels separated at Step 2.
5. Pop-up a top voxel from the stack as a seed for the deformable prototype

and let this latter propagate until reaching a steady state indicating that the
voxel set U enclosed by the final prototype constitutes an extracted object.

6. Calculate the centroid for the voxel set U extracted at the previous step;
find the maximum, Rmax, and the minimum, Rmin, radii from the centroid
of the boundary of that set; find the average radius R = (Rmin + Rmax)/2,
and estimate the scatter parameter ρ from Eq. (3).

7. Use Eq. (2) to assign the prototype gray levels Nx,y,z for each extracted
voxel (x, y, z) ∈ U.

8. Use the normalized cross-correlation CorrC,N between the actual extracted
object C = [Cx,y,z : (x, y, z) ∈ U] and its gray level nodule prototype
N = [Nx,y,z : (x, y, z) ∈ U] as the similarity measure (see Fig. 3).

9. If CorrC,N ≥ τ where τ is a pre-selected similarity threshold (in our experi-
ments below we set it to τ = 0.85 on the empirical basis), then classify the
extracted object as the potential nodule candidate.

10. Remove all the voxels of the extracted object from the stack.
11. If the stack is empty then stop, otherwise go to Step 5.

To reduce the error rate, the initially selected potential candidates are post-
classified just as in [19] to distinguish between the false (FPNs) and true (TPNs)
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Fig. 3. Detected nodule candidate: (a) slices of the extracted voxel set U, (b) the gray
level prototype N, and (c) the actual gray levels C; the correlation CorrC,N = 0.886
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Fig. 4. Estimated and empirical distributions for radial non-uniformity (a), mean gray
level (b), and 10%-tile gray level(c), and the radii dθ in 8 directions θ from the centroid
to the boundary that specify the radial non-uniformity maxθ(dθ) − minθ(dθ)

positive nodules. In contrast to [19], probability distributions of each feature
required by the classifier are accurately estimated with linear combinations of
Gaussians (LCGs) using our algorithms in [15]. The LCGs approximate the
empirical distributions for a training set of the nodules. Figure 4 shows the
empirical and estimated distributions of each feature for both TPNs and FPNs.

3 Experimental Results and Conclusions

The proposed algorithm was tested on the same LDCT scans of 50 screened
subjects. Among them, 16 subjects had abnormalities in their CT scans and
34 subjects were normal (this classification was validated by two radiologists).
The chest CT data used in this paper were obtained from Mansoura University,
Urology and Nephrology Center, Radiology department, Mansoura, Egypt as
follows: 1) The scanner: Multidetecor scanner (Light speed plus; GE), 2) Scan
mode: Helical, 3) Slice thickness: 2.5mm, 4) Field of view: large, 5) K.V.: 120,
6) M.A.: 200, 7) Exposure time: 20-25 sec., and 8) Window level: -500 & length
1500. Our approach extracted 113 potential nodule candidates out of the true 119
nodules and 14 FPNs. The post-classification has reduced the number of FPNs
to 4 but simultaneously rejected two true nodules. Thus, the final detection rate
of the TPNs was 93.3% (111 out of 119) with the FPNs rate of 3.36%. Both the
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Fig. 5. Large candidate nodules (shown in the red colour) detected with our approach

(a) Size 68.9 mm3 (b) Size 52.3 mm3 (c) Size 34.8 mm3

Fig. 6. Small candidate nodules (shown in the red colour) detected with our approach

Table 1. Recognition of different abnormalities with our present algorithm, the previ-
ous one in [19], and the algorithm in [5] w.r.t. the “ground truth” by two radiologists
(the corresponding numbers are bold, bold italic, italic, and regular, respectively)

Type of the True detected False detected True detected False detected
nodules nodules before nodules before nodules after nodules after

removing FPNs removing FPNs removing FPNs removing FPNs
Lung wall 28 : 28 : 14 : 29 3 : 8 : 86 28 : 27 : 13 : 29 1 : 2 : 17
Calcified 49 : 46 : 31 : 49 2 : 4 : 35 48 : 46 : 31 : 49 0 : 1 : 9

Non-calcified 17 : 12 : 14 : 18 3 : 5 : 25 17 : 12 : 14 : 18 1 : 3 : 14
Small 19 : 17 : 10 : 23 6 : 25 : 34 18 : 15 : 9 : 23 2 : 5 : 12

Total TPN rate 93.3% : 82.3% : 56.3%
Total FPN rate 3.4% : 9.2% : 43.6%

rates are notably better than 82.3% and 9.2% in [15], respectively. Figure 5 shows
several large lung nodules detected by our approach, and a few small detected
TPNs are depicted in Fig. 6.

Table 1 presents the above results in detail and also compares them to the
algorithm in [5], the only work known to us on detecting the lung nodules from
the LDCT scans using template matching. It uses fixed circular, semicircular and
approximate spherical templates with parameters which are manually derived
from a training data set. This algorithm, after the post-classification, gives the
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overall TPN rate of 56.3% (67 out of 119) with the FPN rate of 43.6%. It is felt
that this algorithm fails to detect a large number of the true nodules because of
the fixed-size templates and manual specification of their gray level patterns. At
times these patterns change from one LDCT slice to another depending on the
scanned cross section and internal organs that appear in that cross section. In
our present algorithm, these patterns are analytically adjusted to each extracted
shape by applying Eq. (3) to each CT slice.

These experiments show that our new deformable level-set prototype with
the analytically modeled standard intensity pattern detects more than 90% of
the true lung abnormalities. The overall processing time for the data set of
size 1005 × 804 × 186 is 6, 18, and 16 min. for the proposed approach and the
algorithms in [19, 5], respectively. But it is still difficult to accurately detect very
small lung nodules similar to bronchi and bronchioles. Our future work is focused
on features that distinguish between the small lung nodules and normal objects.
Also, we are going to analyze the accuracy of our CAD system with respect to
the ground truth on a much larger number of the real LDCT scans.
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