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Abstract. Thin-slice computer tomography provides high-resolution images that
facilitate the diagnosis of early-stage lung cancer. However, the sheer size of the
CT volumes introduces variability in radiological readings, driving the need for
automated detection systems. The main contribution of this paper is a technique
for combining geometric and intensity models with the analysis of local curvature
for detecting pulmonary lesions in CT. The local shape at each voxel is repre-
sented via the principal curvatures of its associated isosurface without explicitly
extracting the isosurface. The comparison of these curvatures to values derived
from analytical shape models is then used to label the voxel as belonging to partic-
ular anatomical structures, e.g., nodules or vessels. The algorithm was evaluated
on 242 CT exams with expert-determined ground truth. The performance of the
algorithm is quantified by free-response receiver-operator characteristic curves,
as well as by its potential for improvement in radiologist sensitivity.

1 Introduction

State-of-the-art computer tomography (CT) scanners, with spatial resolutions of less
than a millimeter, routinely provide images of smaller and smaller nodules, character-
istic of early-stage lung cancer [1]. However, these gains in spatial resolution have led
to an explosion in the sizes of the image volumes that a radiologist has to review, re-
sulting in significant variability in radiological readings [2]. Figure 1 shows examples
of nodules detected by two expert radiologists but missed by a third expert.

Computer-aided detection (CAD) systems have been developed to aid radiologists
in reading CT exams. Brown et al [3] use simple shape- and intensity-based features
of segmented regions with a fuzzy classifier. The data consisted only of selected 2 cm
thick cross-sections of the lung, favoring the 3D segmentation technique upon which
the algorithm is dependent and avoiding the difficult apex region. McCulloch et al [4]
obtained encouraging results with a Bayesian classifier — 70% sensitivity at 8 false
positives per case operating on noisy low-dose screening data. Their method uses 2D
segmentation to generate candidates and the number of false positives grows with the
use of thinner slices in CT. Paik et al [5] use a geometric model and learn parame-
ters from training data. They report results on only 8 CT volumes and on nodules with
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Fig. 1. Three examples of structures missed by an expert radiologist but independently classified
as nodules by two other experts. These abnormalities were successfully detected by the algorithm
proposed here.

diameters above 6 mm, thus no solid conclusions can be drawn. Farag et al [6] report
numbers as high as 82.3% sensitivity with 9.2% false positive rate. However, the ma-
jority of their nodules are calcified and therefore clinically irrelevant [7] and over 80%
of their ground truth consists of nodules above 12 mm which are easy to detect. Others
have used local structure information alone to discriminate between particular shapes
[8, 9, 10]. However, in all of these methods the thresholds for classification are either
set empirically or learned from data.

This paper introduces a technique for the shape analysis of 3D images and demon-
strates its application to the detection of lung nodules in CT exams. The method is based
on a fully 3D algorithm that does not depend on segmenting or grouping the relevant
anatomical structures or any edge detection method. The proposed algorithm combines
geometric and intensity models with the eigenanalysis of the curvature tensor in order
to identify pulmonary nodules in CT. All parameters and thresholds are derived from
these models, eliminating the need for training data. Furthermore, no model fitting or
optimization is performed. All operations are local and therefore the proposed method
can be interpreted as a filter for highlighting nodule-like structures in the image.

2 Differential Operators on Volume Images

A volume image I is defined as a twice-differentiable (C2) mapping from a compact
domain V ⊂ R

3 into R. For any given k, the equation

I(x) = k (1)

defines an isosurface Mk ⊂ V at the points x satisfying (1) and ∇I(x) �= 0 [11]. A
common descriptor for the local structure of an image I is its Hessian H [8]. Although
the eigenvalues of H provide an intuitive measure of local structure, they do not capture
the true underlying shape, which is more accurately described by the curvature of the
isosurfaces defined by (1). For example, consider an isotropic Gaussian intensity profile
(see Fig. 2). Hessian-based shape measures [8] would incorrectly signal the presence
of a cylinder at the inflection points of the profile, while the principal curvatures would
correctly flag the entire structure as spherical.
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2.1 The Curvature Tensor

It can be shown that, at the point x, the principal directions of the isosurface given by
(1) can be obtained directly from the implicit function by solving the eigenproblem

Fig. 2. Cross-section and top view
of Hessian responses on a 2D
Gaussian profile. The Hessian re-
sponse is spherical in the in-
nermost circle, cylindrical in the
dark band containing the inflection
point, and void in the outer band.

min
v̂

/ max
v̂

−v̂TNTHNv̂
‖∇I‖ ,

subject to ‖v̂‖ = 1,

(2)

where N is the 3 × 2 matrix of the null space of
∇I . The principal directions v1 and v2 are given
by v1,2 = Nv̂1,2, where v̂1,2 are the solutions
of (2), and the corresponding principal curvatures
κ1 and κ2 are the eigenvalues of the 2 × 2 ma-
trix −NTHN/‖∇I‖, with κ1 ≤ κ2. The matrix
C = −NTHN/‖∇I‖ is herein defined as the cur-
vature tensor of the volume image.

Yoshida et al [9] present a method to compute
κ1 and κ2 for an implicit surface. Their technique
also estimates curvatures directly from an implicit
function. However, it requires the isosurfaces to be
amenable to a local parameterization via Monge
patches, which cannot be achieved everywhere on the
surface [12]. The solution from (2) circumvents this
problem and also avoids the rotation step required by
Vos et al [10].

2.2 Response of the Curvature Tensor

At points x for which the isosurface defined by (1) is well-approximated by a spherical
patch with surface normal pointing outward, κ1 and κ2 satisfy κ1 > 0 and κ2 > 0.
For cylindrical patches with an outward normal, κ1 ≈ 0 and κ2 > 0. Finally, saddle
points have κ1 < 0 and κ2 > 0. This suggests a methodology to discriminate between
spherical and cylindrical regions in volume images, such as nodules and vessels in CT
scans of the lung. The sphericalness and cylindricalness measures b(x) and c(x) for
the curvature tensor at the isosurface intersecting the point x are defined as

b(x) =

{
κ1
κ2

if κ1, κ2 > 0,

0 otherwise,
and c(x) =

{
1 − κ1

κ2
if κ2 > 0,

0 otherwise.
(3)

3 Anatomical Modeling

The eigenvalues of the curvature tensor can be used to quantify the sphericalness or
cylindricalness of a voxel in a CT volume by thresholding the values attained by (3) at
that voxel. An important contribution of this work is the use of a model-based approach
to set these thresholds from generative models for the relevant anatomical structures.
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3.1 Anatomical Modeling of Local Shape

The eigenvalues κ1 and κ2 of the curvature tensor are independent of any transformation
I ′(x) = aI(x) + b applied to the image volume I(x). In fact, κ1 and κ2 at a voxel x
depend only on the shape of the associated isosurface, not on its isovalue. Therefore one
only needs to take into account the local shapes of the relevant anatomical structures,
not the exact form of their intensity profiles.

Radiologists routinely model pulmonary nodules as spherical objects when attempt-
ing to measure quantities such as volume and growth rate [13]. In this work, the local
shapes of isosurfaces of relevant 3D anatomical structures — nodules and vessels —-
are approximated using ellipsoidal and toroidal surface patches.

Ellipsoidal model. Under the appropriate curvature-preserving mapping the implicit
equation of an ellipsoid E is

(a) (b)

Fig. 3. The local shape of the isosur-
faces of nodules is approximated by el-
lipsoidal patches (a) and that of vessels
is approximated by toroidal patches (b)

x2

a2 +
y2

b2 +
z2

c2 = 1, (4)

where a ≤ b ≤ c are the lengths of the ellipsoid’s
semi-axes, as shown in Fig. 3(a). The principal
curvatures κE

1 and κE
2 take on minimum values

κE
1,min =

a

c2 and κE
2,min =

a

b2 . (5)

Furthermore, the minimum and maximum values
of the ratio κE

r = κE
1/κE

2 , a component of the
measures defined in (3), are given by

κE
r,min =

a2

c2 , κE
r,max = max

(
a2

b2 ,
b2

c2

)
. (6)

Toroidal model. A torus T with small radius r and large radius R, as shown in Fig.
3(b), can be parameterized as

T :

⎧⎪⎨
⎪⎩

x = (R + r cosψ) cos θ

y = (R + r cosψ) sin θ

z = r sinψ

(7)

with (θ, ψ) ∈ (−π, π]2. Its principal curvatures κT
1 and κT

2 take on values

κT
1 =

cosψ

R + r cosψ
and κT

2 =
1
r
, (8)

and the minimum and maximum values of the ratio κT
r = κT

1 /κT
2 can be directly

computed from (8) by varying ψ.
The analysis for the bounds in κ1, κ2, and κr presented in this section can be directly

used to set an acceptable range for κ1 and κ2 and thresholds for (3). In the case of the
ellipsoidal model, the range of values for a, b, and c can be set based on the range of
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targeted nodule sizes. Given a, b, and c, we can set thresholds for κE
1,min, κE

2,min, and
κE

r,min. The lower bound on the aspect ratio for the ellipsoidal model was set at 1/2, by
assuming that nodules are roughly round. As for vessels, one typically has R � r, and
thus κT

1,min ≈ 0. However, the surface of vessel junctions can be modeled as highly
bending tori, which would result in κT

1,min 	 0.

4 Application to Lung Nodule Detection

The algorithm was initially implemented using the open source Insight Toolkit (ITK)
[14], which provides a general framework for processing n-dimensional medical images
and includes basic libraries for image processing, segmentation and registration.

The volume image was first smoothed by

Fig. 4. Isosurfaces around the center of a
junction display sharp peaks, with strong
spherical responses along the centerline of
the surrounding vessels

Fig. 5. A maximum intensity projection im-
age showing spherical responses overlaid
on the original CT data

convolution with a Gaussian kernel to reduce
the effect of noise. Then the lung volume was
automatically extracted via region growing to
provide a region of interest (ROI) for subse-
quent operations. The eigenvalues of the cur-
vature tensor were computed at every voxel
in the ROI, and thresholds derived from the
anatomical models were used to label each
voxel as spherical, cylindrical, or neither.

A major source of false positives for the
Hessian are vessel junctions, since they dis-
play large second derivatives in all directions.
Junction isosurfaces, on the other hand, are
clearly non-spherical, as seen in Fig. 4. How-
ever, they have sharp peaks that cause the
curvature tensor to generate a thin streak of
spurious spherical responses along the cen-
terline of the vessels. These spurious re-
sponses can be easily removed by morpho-
logical closing of the surrounding cylindrical
responses.

The responses defined at individual vox-
els are sufficient for presentation to radiolo-
gists as a tool for highlighting spherical re-
gions, e. g., by overlaying the responses on
the original CT volume, as shown in Fig.
5. To quantify the algorithm’s performance
neighboring voxel responses were grouped
and counted as a single detection. Experi-
mental results and validation are presented in
the next section.

The algorithm was re-implemented with several optimizations, including special-
ized data structures for memory access and morphological operations. On a 500-slice

http://www.itk.org
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(a) (b)

Fig. 6. (a) FROC curves showing the performance of the proposed algorithm compared to
two other commonly-used methods. (b) FROC curves showing the algorithm’s performance on
datasets from two different institutions with different acquisition protocols.

dataset with slice thickness of 0.625 mm, the optimized version ran in 10 seconds on
off-the-shelf hardware with dual 3.06 GHz Xeon processors and 2 GB of memory. The
algorithm works with physical coordinates, using the pixel and slice spacing informa-
tion contained in the CT images. For example, the standard deviation σ of the smooth-
ing kernel and the radii for the morphological structuring elements were specified in
millimeters and selected based on the anatomical models and clinical protocol. The
smoothing kernel has σ = 2 mm, targeted at detecting nodules of diameter 4 mm.

5 Experimental Results

The algorithm was validated on datasets from two different institutions, totaling 242
exams. The dataset from institution 1 consisted of 50 low-dose CT exams of high-risk
subjects acquired at 40 mAs and 120 kVp, with slice thickness of 1.25 mm. The exams
were independently read by three expert radiologists. Ground truth was defined as all
nodules marked by two or more radiologists and consisted of 109 non-calcified solid
nodules with diameter greater than 3 mm of which 80 had diameter greater than 4 mm.
The detections of the algorithm were considered true positives (TP) if they overlapped
with a ground truth nodule, and false positives (FP) otherwise. Free response receiver-
operator characteristic (FROC) curves were produced by sweeping the detections gen-
erated by the algorithm ranked in decreasing order of average spherical response.

For the nodules 4 mm and above in diameter, the algorithm achieved a sensitivity of
67.5% at 9.3 FP/case. These results were compared with those of two other well-known
and oft-used local shape descriptors: the Hessian [8] and the structure tensor [15]. At
the same rate of 9.3 FP/case, the Hessian and the structure tensor achieved sensitivi-
ties of only 40.0% and 17.5%, respectively. The FROC curves for all three techniques
are shown in Fig. 6(a), demonstrating the superior performance of the proposed tech-
nique. In another experiment, nodules with diameter between 3 mm and 4 mm were
also included, since 3 mm is the smallest diameter for which a clinical protocol has
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been defined [7]. In this experiment, the proposed algorithm achieved a sensitivity of
70.6% at 25.6 FP/case compared to sensitivities of 46.8% for the Hessian and 47.5%
for the structure tensor at the same FP rate (FROC curve not shown).

Table 1. The table shows, for each radiologist, the num-
ber of nodules missed, the radiologist sensitivity, the num-
ber of missed nodules detected by the algorithm, the algo-
rithm’s false positive rate, the sensitivity improvement, the
combined sensitivity of the radiologist and the algorithm,
and the average sensitivity improvement weighted by the
number of nodules on the ground truth for each radiolo-
gist. The difference in the algorithm’s false positive rate is
due to the different ground truth for each radiologist.

missed initial added FP/ sensit. final
radiol.

nod. sensit.detect. case improv. sensit.
A 6 86.4% 3 10.0 6.8% 93.2%
B 6 86.4% 4 10.0 9.1% 95.4%

in
st

.1

C 30 55.9% 19 9.5 27.9% 83.8%

D 18 85.4% 4 10.8 3.3% 88.6%
E 19 84.7% 16 10.8 12.9% 97.6%

in
st

.2

F 68 60.7% 36 10.5 20.8% 81.5%
avg. improv.: 14.2%

The dataset from institution
2 consisted of 192 low-dose CT
scans acquired using a differ-
ent protocol (20 mAs, 140 kVp,
with slice thickness of 2.5 mm).
Ground truth was defined as be-
fore and consisted of 210 non-
calcified solid nodules with di-
ameter above 4 mm. The al-
gorithm achieved a sensitivity
of 62.9% at 10.3 FP/case. As
seen in Fig. 6(b), there is only
a minor degradation in the algo-
rithm’s performance when com-
pared to the results on the pre-
vious dataset, even though that
was acquired at half the slice
thickness.

To estimate the improve-
ment in radiological sensitiv-
ity the algorithm’s detections
were combined with each radi-

ologist’s reads. Using a leave-one-out scheme the ground truth for each radiologist was
defined as only those nodules marked by the other two radiologists from the same in-
stitution. For institution 1, there were 38 nodules that were marked by all three radiol-
ogists. For radiologist A, 6 nodules were considered “missed,” i. e., marked only by B
and C. Therefore, the ground truth defined by radiologists B and C consisted of 44 nod-
ules (38 + 6), 38 of which were marked by A, yielding an initial sensitivity of 86.4%.
The algorithm added three more detections, which, when combined with those of A,
resulted in a final sensitivity of 93.2%, at a cost of 10 false positives per case. This pro-
cedure was repeated for radiologists B and C, and for the radiologists from institution 2.
The corresponding sensitivity improvements are shown in Table 1. The overall average
sensitivity improvement was 14.2%. Figure 1 shows examples of nodules detected by
the algorithm but not marked by one radiologist.

6 Conclusions

This paper introduces a technique for detecting pulmonary nodules in CT volume im-
ages of the lung that is based on combining geometric and intensity models with the
eigenanalysis of the curvature tensor. The method does not require either segmentation
of the relevant anatomical structures or sophisticated classifiers and can be viewed as
a filter that highlights specific anatomical shapes. Furthermore, the algorithm does not
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require any training data as values of all parameters and thresholds are derived analyti-
cally from the models. The method is robust to changes in scanning protocols, including
slice thickness, as demonstrated by the algorithm’s performance on multiple databases
with radiologist-provided ground truth.
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