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Abstract. In any medical domain, it is common to have more than one
test (classifier) to diagnose a disease. In image analysis, for example,
there is often more than one reader or more than one algorithm applied
to a certain data set. Combining of classifiers is often helpful, but de-
termining the way in which classifiers should be combined is not trivial.
Standard strategies are based on learning classifier combination functions
from data. We describe a simple strategy to combine results from clas-
sifiers that have not been applied to a common data set, and therefore
can not undergo this type of joint training. The strategy, which assumes
conditional independence of classifiers, is based on the calculation of a
combined Receiver Operating Characteristic (ROC) curve, using maxi-
mum likelihood analysis to determine a combination rule for each ROC
operating point. We offer some insights into the use of ROC analysis in
the field of medical imaging.

1 Introduction

It is often desirable in clinical practice to combine the results of two or more
diagnostic tests or classifiers in order to obtain a more accurate and certain
diagnosis. In the field of medical imaging, combinations of independent assess-
ments based on multiple imaging modalities can be combined to create a joint
classifier. See [2] for example. Results from segmentation or recognition algo-
rithms can also be combined [8, 3] to produce an improved estimate of ground
truth. Ideally, combination of classifiers would be done by joint training and
analysis on a common dataset to which all classifiers can be applied. Standard
methods in machine learning (logistic regression, PCA, SVMs, etc.) could then
be used to find an optimized combined classification scheme [5, 6]. In practice,
however, it is often the case that joint training data is not available, or is of
insufficient quantity. Indeed, there is a “power rule” involved: if it takes roughly
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N data points to estimate a distribution in order to train a single classifier, it is
reasonable to expect the need for on the order of N c data points to estimate the
joint distribution needed to train c classifiers. In light of initiatives established
to encourage the sharing of algorithms, such as the ITK project (www.itk.org),
the lack of sufficient quantities of data for joint training has become more ap-
parent. Accordingly, we have developed the following simple algorithm, used to
combine multiple classifiers without the need for joint training. It is based on
the maximum likelihood analysis of ROC curves of classifiers.

Although ROC analysis is widespread and standard in the medical field wher-
ever diagnostic tests are analyzed, it is far less common within the field of med-
ical image analysis [9]. We feel this is unfortunate, and that a wider use of these
techniques would help lead to general acceptance of image analysis algorithms,
e.g. algorithms for detection, segmentation and registration, within the clinical
community.

2 Background on ROC Analysis

We begin with some basic notions from the standard ROC theory. See [4] for
a review of its use in biomedicine. Let I be an image, depending on a bi-
nary random variable T ∈ {0, 1} representing unknown “truth” and suppose
we have a classification process, or test, A estimating T and depending on a
vector of parameters kA, so that A(I, kA) ∈ {0, 1}. A simple example would
be where I is a pixel in a CT image, kA = (Ilow , Ihigh) consists of a range
for Hounsfield units used to segment some structure, and A is then either
1 or 0, indicating the absence or presence of said structure, i.e. whether or
not the intensity lies in the range given by kA. A more sophisticated exam-
ple might be where A is a segmentation algorithm depending upon several
parameters.

For each setting of the parameter kA we define two probabilities, the true
positive rate tpA = Pr(A = 1|T = 1) and the false positive rate fpA = Pr(A =
1|T = 0). The true positive rate is also known as the sensitivity of the classifier,
while 1 − fpA is known as A’s specificity. We would generally like a classifier to
be specific and sensitive. Thus, these notions give us a partial ordering of the
unit square [0, 1]2 : an operating point (fp1

A, tp1
A) is superior to (fp0

A, tp0
A) if

fp1
A ≤ fp0

A and tp1
A ≥ tp0

A.
The Receiver Operator Characteristic or ROC for A is the set of points

{(fpA(kA), tpA(kA))} ⊂ [0, 1]2, as kA ranges over all of its possible values. When
kA is a single scalar value, the ROC is a curve in the unit square parameterized
by kA. We will assume that our ROC curves are concave, and that tp ≥ fp for
each point one the curve. Concavity is a standard and mild assumption, for any
ROC can be made concave by adding a stochastic component to the classifier [7].
Given concavity, tp ≥ fp on the ROC curve as long as it contains some points
which are superior to (0, 0) and (1, 1). Our work is related to that of [7], who
used stochastic methods to create a combined classifier having an ROC equal to
the convex hull of the ROCs of the individual classifiers. Our method can pro-
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duce superior classifiers, in the sense of having an ROC superior to this convex
hull, but requires a conditional independence assumption.

3 Combining Classification Processes

3.1 Model Assumptions

Our model assumes that the classifiers A and B are conditionally independent.
This means that given some unknown truth, positive (T = 1) for example, we
assume that the output of A and B can be modeled as independent Bernoulli
processes with respective probability of success tpA and tpB, i.e. the true-positive
rates for the two processes. Note the we do not assume the independence of A
and B; only the much weaker assumption of independence conditioned on the
true underlying value is required. Conditional independence assumptions are
common in machine learning and statistical and information theoretic image
processing, especially in relation to maximum likelihood estimation. In the area
of ROC analysis, and application to combinations of classifiers, the role of con-
ditional independence is investigated in [1]. This work is related to our own, but
differs in the combination technique, estimation of priors, and derivation of a
joint statistic.

3.2 Maximum Likelihood Estimation

Let us assume we have two classifiers A and B, and that they are operating
according to respective parameters kA and kB . We assume we know the ROC
curves of the two processes, and the true positive and false positive rates for
every value of the parameters kA and kB. Given some input, processes A and B
will output either 0 (false) or 1 (true), giving us a total of 4 possible cases. For
each case we have an expression for the maximum likelihood estimate (MLE) of
the unknown truth T :

Table 1. Binary Output for Classifiers A, B and the Maximum Likelihood Combination

A B Combined MLE of Truth T

1 1 Pr(A = 1 , B = 1 | T = 1 ) ≥ Pr( A = 1 , B = 1 | T = 0 )
1 0 Pr(A = 1 , B = 0 | T = 1 ) ≥ Pr( A = 1 , B = 0 | T = 0 )
0 1 Pr(A = 0 , B = 1 | T = 1 ) ≥ Pr( A = 0 , B = 1 | T = 0 )
0 0 Pr(A = 0 , B = 0 | T = 1 ) ≥ Pr( A = 0 , B = 0 | T = 0 )

Each inequality (logical expression) in the rightmost column evaluates either
to 0 or 1, and the resulting value is the maximum likelihood estimate of the
truth T. If conditional independence is assumed, then Pr(A = 1 , B = 1 | T =
1 ) = Pr(A = 1 | T = 1 ) Pr(B = 1 | T = 1 ) = tpA tpB. See [1] for more details.
Proceeding similarly for the other terms in the rightmost column above, we get
the following table:
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Table 2. Binary Output for Classifiers A, B and the Maximum Likelihood Combination

A B Combined MLE of Truth T

1 1 tpA tpB ≥ fpA fpB

1 0 tpA(1 − tpB) ≥ fpA(1 − fpB)
0 1 (1 − tpA)tpB ≥ (1 − fpA)fpB

0 0 (1 − tpA)(1 − tpB) ≥ (1 − fpA)(1 − fpB)

From our assumptions detailed above, tpA tpB ≥ fpA fpB and (1 − tpA)(1 −
tpB) ≥ (1 − fpA)(1 − fpB), so the first and last rows of Table 2 are determined,
and whenever A and B are in agreement their common output is the maximum
likelihood estimate of T. Thus, only the middle two rows of the table above
need to be determined, resulting in one of 4 possible MLE combination schemes,
which we mnemonically name scheme “A and B,” scheme “A,” scheme “B,” and
scheme “A or B.” These are summarized in the following table:

Table 3. Schemes for Combining Processes A and B

A B Scheme “A and B” Scheme “A” Scheme “B” Scheme “A or B”
1 1 1 1 1 1
1 0 0 1 0 1
0 1 0 0 1 1
0 0 0 0 0 0

It’s easy to calculate the false positive fp and true positive tp rates for these
schemes, again using the assumption of conditional independence:

Table 4. False (fp) and True (tp) Positive Rates by Combination Scheme

Scheme fp tp

“A and B” fpA fpB tpA tpB

“A” fpA tpA

“B” fpB tpB

“A or B” fpA + fpB − fpA fpB tpA + tpB − tpA tpB

Thus, under the assumption of conditional independence, these rates can
be calculated from information contained in the ROCs for A and B alone. In
practice, this means that decision processes can be combined without retraining,
since there is no need to estimate joint distributions for the output of A and B,
nor the need to know the distribution of the underlying truth T.

3.3 Effect of the Combination Rules on Composite Accuracy

When operating under scheme “A and B,” we have fp = fpA fpB ≤ fpA and
similarly fp ≤ fpB, tp ≤ tpA, tp ≤ tpB. We see that when compared to A
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or B alone, this rule generally decreases sensitivity tp but increases specificity
1 − fp, as one might expect for a scheme that requires a consensus to return a
positive result. For the scheme “A or B,” we have fp = fpA + fpB − fpA fpB =
fpA + fpB (1 − fpA) ≥ fpA, and similarly fp ≥ fpB, tp ≥ tpA, tp ≥ tpB. So
the “A or B” rule generally increases sensitivity but decreases specificity, again
as one might expect. Thus in each of these cases the operating rate (fp, tp)
is not demonstratably superior to either (fpA, tpA) or (fpB, tpB). However, an
advantage is gained by an analysis of the entire range of operating rates, as we
describe below.

3.4 Calculating Attainable True and False Positive Rates

To combine processes A and B, we begin by calculating for each value of the
parameter pair (kA, kB), and corresponding 4−tuple of false-positive and true-
positive rates (fpA, tpA, fpB, tpB), the correct ML scheme to use according to
Table 2 above, and the resulting combined rates (fp, tp) for that scheme using
the formulas in Table 4. In practice, we take discrete values for kA and kB , say
by sampling them evenly. The resulting set of points (fp, tp) for two example
ROCs are shown in Figure 1.
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Fig. 1. Two ROCs (solid line, broken line), together with set of points (circles), the
outer boundary of which represents the ROC of the combined ML process

3.5 ROC Boundary Curve

The set of points (fp, tp) represent possible operating points for our joint pro-
cess. However, we do not need to consider points in the interior of the region
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containing these points. For each point in the interior, there is a point on the
outer boundary of the region which is superior, and thus a better operating
point. For example, there is a point on the boundary which has the same false
positive rate and a greater true positive rate. Thus, we discard these interior
points, and consider only those points along the outer boundary. These points
form a curve which is the ROC of our combined process. This combined ROC
is the graph of the combined true positive rate thought of as a function of the
combined false positive rate fp. We take fp ∈ [0, 1] to be the parameter of our
combined process. In practice, the outer boundary ROC can be estimated by
splitting the interval [0, 1] into a number of sub-intervals i.e. bins, and within
each bin finding the pair (fp, tp) having the largest value of tp. The choice of the
number of bins to use requires some care, but this is a common concern which
appears whenever data histogramming is required, and standard solutions can
be applied. We are currently researching a method by which an exact calculation
of the joint ROC curve can be obtained. Along with each point (fp, tp) on the
combined ROC curve, we keep track of a pair of parameters (kA, kB), and a ML
combination scheme which allows us to operate at (fp, tp).

3.6 Calculating a Combined Statistic

In theory, the classifiers A and B can be any binary decision process governed by
parameters kA and kB , where these parameters may be vector valued. In practice
however, it is often the case that kA and kB are simple thresholds applied to
scalar outputs sA and sB calculated as part of the A and B decision processes
respectively. Thus A returns the estimate T = 1 if and only if kA ≤ sA, and
similarly for B. In this case, it may be desirable to have a new derived statistic
s for the combined process. Let C denote our combined classifier, created as
described above. For a chosen operating point (fp, tp) on the ROC curve for
C, we have associated thresholds kA and kB and an MLE combination rule to
be applied in order to derive an estimate C ∈ {0, 1} of T based on the pair of
statistics sA and sB. We define our joint statistic s as a function of sA and sB

and the chosen operating level as follows:

Table 5. Formulas for Joint Statistic s

Scheme Formula for s
“A and B” min(sA − kA, sB − kB)

“A” sA − kA

“B” sB − kB

“A or B” max(sA − kA, sB − kB)

To use s, we treat it as a statistic and return C = 1 if and only if s ≥ 0.
It is easy to see that the true positive and false positive rates for this process
are the same as the rates associated with the point on the joint ROC at which
we wish to operate. We are currently refining a method by which a single joint
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statistic can be produced without the need for an a priori specification of an
ROC operating point.

4 Illustration of the Method

We illustrate the method described above on a synthetic example. In Figure 2
we show two normal distributions for each of two classifiers A and B. One is the
probability distribution for the statistic sA or sB given that T = 0, and the other
is for these statistics given T = 1. The thresholds to use, shown as vertical lines,
are determined by our algorithm after we choose an operating point (fp, tp) on
the combined ROC curve, shown circled on the in Figure 3. Also displayed in
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Fig. 2. Distributions associated with the statistics sA and of a thresholding classifica-
tion scheme. The thresholds to use are determined by our algorithm.
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Fig. 3. ROC curves for classifiers A and B. The circled point on the combined ROC
curve represents a level at which we wish to operate. Our algorithm determines the
thresholds to use to attain this level, shown in Figure 2, and the corresponding oper-
ating levels for A and B, shown circled on their respective ROC curves.
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Figure 3 are the ROC curves for A and B and the corresponding operating levels
which result from the thresholds our algorithm chooses.

5 Conclusion and Discussion

We have developed a simple algorithm for combining multiple classifiers without
the need for joint training, based on the maximum likelihood analysis of ROC
curves of classifiers. Our work has been motivated by the general paucity of joint
training data to use with a rapidly expanding array of new segmentation algo-
rithms and diagnostic tests. Future work will include the testing of the method
on a range of image and other clinical data, including an investigation of the
validity of the conditional independence assumption across this range.

As mentioned before, ROC analysis, though standard in the medical com-
munity, has not been as widely adopted in the medical image processing field.
Often, a segmentation or registration algorithm requires the specification of nu-
merous parameters, such as kernel sizes, time steps, thresholds, weights applied
in a weighted sum of functional terms, etc. The engineer typically varies these
parameters to find the single point which gives a good result for a training data
set, then applies them to a test data set. Yet finding this single point in param-
eter space is neither necessary nor desirable. What is more in tune with medical
research outside of image processing is to report the ROC for the entire range of
parameters, or the outer boundary of these possible operating points. Note that
in the latter case, the outer boundary effectively reduces the degrees of freedom
in the specification of parameters to one.

Medical image processing is maturing, with standardized algorithms for de-
tection, segmentation and registration readily available to the general commu-
nity in shared form through mechanisms like the ITK project. We believe more
widespread use of ROC analysis will lead to greater clinical acceptance.
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