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Abstract. This work presents a framework driven by parcellation of brain gray 
matter in standard normalized space to classify the neuronal fibers obtained 
from diffusion tensor imaging (DTI) in entire human brain. Classification of 
fiber bundles into groups is an important step for the interpretation of DTI data 
in terms of functional correlates of white matter structures. Connections 
between anatomically delineated brain regions that are considered to form 
functional units, such as a short-term memory network, are identified by first 
clustering fibers based on their terminations in anatomically defined zones of 
gray matter according to Talairach Atlas, and then refining these groups based 
on geometric similarity criteria. Fiber groups identified this way can then be 
interpreted in terms of their functional properties using knowledge of functional 
neuroanatomy of individual brain regions specified in standard anatomical 
space, as provided by functional neuroimaging and brain lesion studies. 

1   Introduction 

Delineation of functional brain networks is an important issue for understanding brain 
function. Most of what is known about functional organization of the brain is based 
on contributions of gray matter regions distributed across the brain. Relating this 
knowledge to structural organization of white matter has become possible with recent 
DTI methods, [1]. Tractography allows characterization of connectivity patterns 
across cortical and subcortical regions by specifying extent and orientations of the 
neural fibers in the white matter. With this information, normal brain function, its 
development, pathologies, and the effects of normal aging can be better understood if 
the principles of white matter organization can be described [2]; the nature of the 
interactions between functionally related brain regions but geometrically separated 
can be investigated. Conversely, functional interpretation of white matter fiber 
bundles can be made in reference to the gray matter regions that they connect. 

An important goal in this area of research is to achieve systematic identification and 
characterization of axonal fiber tracts. Current attempts for manually and automatic 
grouping and labeling tend to focus on similarities between geometric properties of 
fibers. Ding et al. [3] combined a corresponding segment ratio with the mean distance 
over the segments to delineate the similarity between two streamlines generated from a 
region of interest (ROI), and grouped the geometrically similar streamlines with nearby 
seeding points into the bundle. Corouge et al. [4, 5] defined three distance measures 
based on the point sets on the pair of streamlines, and classified a set of streamlines 
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within specified ROI(s) into meaningful bundles. However, variations across subjects in 
white matter pathway organization can make extracting and labeling the fiber paths by 
hand time-consuming and error-prone. The task becomes more challenging when 
classifying the paths over the entire brain instead of a ROI since no human input about 
the path information will be implied. Zhang et al. [6] explored an unsupervised 
classifying algorithm on a dense set of paths over the entire brain, and used a serial of 
strategies in setting seeding points, path constraints, culling distance and setting distance 
metrics to minimize the misclassifications. Brun el al [7] compared the fiber path 
pairwise to create a weighted undirected graph that was partitioned into coherent sets 
using the normalized cut criterion.  

Our approach starts by identification of commonalities in terminations of white 
fibers in gray matter. For this, we use a standard brain atlas which provides a 
parcellation scheme for brain gray matter [Talairach and Tournoux, 1986], which is 
used by most functional neuroimaging studies for assigning functional roles to 
individual brain regions in a common standard space. The rationale is that fibers that 
connect neighboring gray matter regions that are considered to form functional units 
are most likely to be part of the same white matter tract. At this stage of analysis, 
alternate pathways between the same regions may appear to form a single tract, and 
fibers whose gray matter terminations are nearby but labeled differently in the atlas 
might be assigned to different clusters. After this initial classification, subsequent steps 
eliminate unlikely fibers, determine subgroups of fibers based on pairwise comparisons 
of geometric properties and blend groups of fibers with similar trajectories. This 
approach also considerably reduces computational load, since not all possible 
comparisons between fibers need to be computed. Additional anatomical constraints 
related to global organization of brain structures, as well as functional neuroimaging 
results, can easily be incorporated into this procedure for fiber classification.  

Another reason why it is desirable to use the spatial organization of gray matter as 
a reference point for identifying white matter pathways is that this might make easier 
to combine tractography data across subjects, and to make comparisons across group. 
Once pathways within an individual brain have been identified, there is also the 
problem of deciding which pathways across individuals correspond to the same 
anatomical tract so that quantitative comparisons can be made. Variability of spatial 
extents of pathways across individual brains is currently not well known. 
Correspondences in the relative positions of gray matter structures have been better 
characterized, and addressed by spatial normalization methods. More concretely, a 
tract connecting two cortical regions, such as dorsal frontal and posterior parietal 
cortices, might show considerable variability in its trajectory, so that spatial overlap 
of its extent across individuals might be poor. Choosing tracts based on the regions 
that they connect rather than the regions that they cover in space might be a better 
basis for comparing the properties of tracts across individuals. 

2   Materials and Methods 

2.1   Tracking Streamlines 

The extraction of fiber paths for the entire brain is performed with the tractography 
tool described in [8]. The tracking algorithm used is based on the STT algorithm. In 
brief, tensor components are calculated from a voxel size of 1.85 × 1.85 × 1.85 mm3 
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diffusion weighted images acquired along 13 gradient directions. Streamlines 
following the principal diffusion directions are produced from seed points along a 
regular 1.85 mm grid, constrained only to voxels with fractional anisotropy (FA) value 
exceeding 0.15, and following a local continuity constraints. The integration stops at 
points where FA value falls below 0.15, which indicate low diffusion directionality. 

Figure 1 shows whole-brain streamline sets extracted by this method from a test 
dataset, and transformed to a common stereotactic space using the Montreal 
Neurological Institute (MNI) T2 template with SPM2 software. There are more than 
46,700 paths which are longer than 20mm. Since the tracking results are not 
constrained by geometric criteria, a significant portion these 40K paths can be due to 
effect of noise and include multiple outliers.  

  

Fig. 1. Whole-brain streamline sets extracted by the method from a test dataset 

2.2   Atlas-Based Labeling and Classification of the Fiber Bundles Based on 
Initial Labels 

As a first step, Talairach brain atlas is used to provide labels for each streamline or 
path and for each fiber bundle separately on the basis of coordinates of two end-
points. The labeling of each streamline is done as following: 

• If both of two end-points of the streamline fall within regions labeled as gray 
matter in the atlas space, the streamline is labeled with the names of the regions 
that it connects (eg., “BA 7_Thalamus”). 

• If only one end-point of the streamline falls into labeled gray matter, the second 
termination is not identified in the atlas as gray matter, the streamline is marked 
as the name of the gray matter and unidentified (eg., ‘‘BA7_ unidentified’’’). 

• If both end-points of the streamline are within regions not identified in the atlas 
as gray matter, it is marked as “unidentified_unidentified”. 

Streamlines that can actually be interpreted as corresponding to axonal fibers 
should be connecting functional brain regions, and organized in groups (fiber bundles) 
that correspond to white matter tracts. After the first label assignment, the streamlines 
are classified into the groups of fiber bundles based on correspondence of atlas labels 
for  their  terminations.  Figure  2  shows  the  fiber  bundles  that connect left and right  
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hemisphere and classified into more than 150 
bundles in the step. Since the robustness of 
fiber tracking remains limited at junctions and 
in noisy regions, the extracted fiber set 
contains outlier paths, paths that are part of 
other anatomical tracts, and spurious paths 
linking between anatomically unrelated tracts. 
These paths should be removed or classified 
into the correct bundles during the initial 
classifying stage: 

• All streamlines linking between 
identified anatomic or functional gray 
matter structures are grouped into the 
different fiber bundles according to their names. For instance, all streamlines 
labeled as “BA7_Thalamus” are incorporated into a single group. 

• The streamlines named as ‘unidentified _unidentified’ are assigned to one of the set 
of the fiber bundles defined for the whole brain based on the  similarity measures 
defined in the next section. Figure 3 shows that red color fiber bundle is the source 
bundle that is within left hemisphere regions 
not identified in atlas as gray matter, and 
incorporated into the white color fiber bundle 
based on the similarity. 

• The streamlines labeled as “gray matter 
_unidentified” are incorporated into one of 
the set fiber bundles which share the 
identified gray matter label for this streamline 
as a termination based on the similarity. 

• Streamlines that are shorter than 30 mm or 
that cannot be assigned to any fiber group 
based on the similarity measure are removed. 

2.3   Classifying Fiber Bundles 

The way the fibers bundles are clustered in 3D space, the degree to which fibers in the 
same bundle run parallel, and their distinct physical and geometric properties should 
match the properties that brain white matter tracts have in general to be biologically 
plausible. Low spatial resolution of DT images, limited robustness of fiber tracking 
methods at junctions and in noisy regions, and interindividual variability of white 
matter anatomy introduce errors into the fiber tracking procedure. Therefore, the fiber 
bundles generated by the steps above may contain biologically implausible outlier 
paths and paths forming spurious bridges between fiber bundles that correspond to 
actual pathways. The next classification stage is introduced to address these problems. 
The goals of classifying are removing the outliers, partitioning the fibers in the bundle 
into natural clusters, and agglomerating the clusters into correct bundles according to 
the position and shape similarity of fibers. Two measures of similarity between pairs 
of single fibers are defined below. 

 

Fig. 2. Fibers connecting the left and 
right hemisphere are classified into the 
bundles viewed with different colors 

ï

Fig. 3. Red-color fiber bundle is 
incorporated into the white-color 
fiber bundleï
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Similarity Measure. Two fibers are considered similar when they have comparable 
length, similar shape, and are separated by a short distance. Two pairwise distances 

between fibers iF  and jF  are used for the similarity measure:  

1. Mean distance Md : 
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The mean distance Md  is a good indicator of shape similarity and spatial 

closeness of a pair of fibers. When two fibers that have comparable length are similar 

in shape and close in location, Md is small; when the distance between two fibers is 

large, or their shapes are different, Md  is large. On the contrary, the Hausdorff 

distance Hd  being a worst-case distance, it is a useful metric to reject outliers and 

prevent classifying paths with high dissimilarity.  

Classifying Fiber Bundles. Classifying the fibers in the bundle involves finding 
subsets of fibers that correspond to natural anatomical groups by identifying fibers that 
are clustered closely together in 3D space, running parallel to each other, and have 
distinct physical and geometric properties. If a bundle formed in Section 2.2 contains 
more than one such group, it is split into natural sub-clusters. After splitting of bundles, 
similarities between neighboring sub-clusters are assessed in order to identify those 
that are likely to belong together in the same tract, so that they are regrouped into a 
new bundle, and to reject sub-clusters containing small numbers of fibers and showing 
low similarity with other groups as outliers that are likely to be due to artifacts.  

Splitting approach begins with the calculation of pairwise Md of the fibers in the 

same bundle. It is not a time-demanding task since the number of fibers in a bundle is 

not high generally. Supposed calculating the pairwise Md  between the fiber iF ψand 

the fiber jF ψin the bundle C , ij ≠ . If tFFd jiM <),(  (a threshold to be chosen), 

iF  and jF are in the same sub-cluster, and vice versa. After calculating a table of 

pairwise Md , the approach propagates from neighboring fiber to neighboring fiber. 

The threshold t  depends on the position and shape of the fiber bundle. The larger t  
value is, the lower the number of sub-classes will be, and vice versa. 

Finding the neighbor candidates of the fiber bundle, and limiting the similarity 
measurement between sub-cluster fibers and the candidate-bundle fibers are very 
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important to searching approach. The pairwise Md  comparison of all fiber paths is a 

time-consuming task because the number of fiber paths in entire brain is huge. So the 
fiber bundle properties of anatomic position, direction, shape, length, end-points, the 
mass center, and connectivity are introduced for the finding of neighbor bundle 
candidates in order to limit the number of similarity measurements.  

The following steps are involved to reject a sub-cluster or group it into the neighbor 
fiber bundle or keep it as a natural fiber bundle: 

1) For a fiber iF  in the sub-cluster, the fiber candidates are found in the candidate 

bundles. These candidates and fiber iF  have similar in shape and direction, and 

the mass centers of them are the neighbors. 

2) Similarity (mean distance Md ) between iF  and each of the fiber candidates are 

calculated, and a similarity threshold value is set. 

3) One fiber in candidates is located, whose similarity is greatest ( Md  is 

smallest). 
4) If the similarity in step 3 is accepted, 

the sub-cluster is merged into the 
bundle with the found fiber in step 3 
and the processing is stopped. If the 
similarity is unaccepted, another fiber 

jF  in the sub-cluster will be chosen 

and steps 1-4 are repeated. 

5) When all fibers F in the sub-cluster 

are checked and the sub-cluster cannot 
be merged into other bundle, if the 
average fiber length of the sub-cluster 
is less than 30 mm and the number of 
fibers is less than 3, the sub-cluster is 
rejected forcedly. Otherwise, the sub-cluster is kept and waited for checking 
manually by an expert. 

Repeating the above steps for all sub-clusters and fiber bundles, the algorithm 
partitions the set of fibers into different fiber bundles. Figure 4 shows the processed 
results of the fiber bundles that connect left and right hemisphere, there are 14 fiber 
bundles left. 

3   Results 

The neuronal fiber classification and quantification method was implemented in 
Matlab, and tested on the fiber paths from real DTI datasets. Figure 1 shows the 
streamlines with the length greater than 20 mm before classifying and the path set 
without the constraint. There are about 46,700 paths; some are short paths stopping 
within the ambiguous white matter regions and being the part of other paths, which 
could potentially create artificial links between fiber bundles. Figure 5A shows the 

 

Fig. 4. The processed results of the fiber 
bundles that connect left and right 
hemisphere 
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bundles formed after the first step, based on common gray matter projections 
determined by atlas labels. The final results, derived by redistribution and pruning of 
fibers based on similarity measurements are shown in Fig 5B. 

a b  

Fig. 5. (a) shows the bundles formed after the first step, there are more than 3000 bundles. (b) 
The final results, derived by redistribution and pruning of fibers based on similarity 
measurements, there are 264 bundles left. 

4   Discussion and Conclusion 

The focus of this work is on classification fiber paths derived from DTI data into 
bundles associated with distinct anatomical and functional structures. The fiber 
classification procedure is centered around knowledge of anatomical and functional 
subdivisions of gray matter obtained from the Talairach atlas. Fibers are first grouped 
based on common projections to parts of gray matter designated as distinct regions in 
the atlas. Subsequent stages refine the initial distribution of fiber groups, so that the 
final set of bundles contain fibers that share similar physical and geometrical 
properties, and connect gray anatomically and functionally related regions of gray 
matter. This approach reduces the computational load of whole brain fiber analysis, 
and automatically produces groups of fibers that can be interpreted in an intuitive 
manner.  

The algorithm extracts whole-brain streamlines from naive dataset, transforms the 
streamlines to a common stereotactic space using the MNI T2 template with SPM2 
software, and names the fiber and fiber bundle with the region names of two end-
points of the fiber and fiber bundle. The transform accuracy and interindividual 
variability do influence the name of one fiber and may put the fiber in an incorrect 
bundle at initial stage, the algorithm re-classifies the fibers into natural anatomical 
bundles by identifying fibers that are clustered closely together in 3D space, running 
parallel to each other, and have distinct physical and geometric properties. If the 
difference between the individual brain and Atlas is large, some fiber bundles 
connecting small cortical areas may have an incorrect label names.  

Low spatial resolution of DT images and limited robustness of fiber tracking 
methods at junctions and in noisy regions may issue tracts that are locally consistent 
but incorrectly connected. The algorithm cannot handle the case currently, and the 
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fiber bundles have to remove manually. Our future work will focus to validate the 
fiber tracts and to explore the relationship between the physical and geometric 
properties of the fiber tracts and the brain diseases and brain development. 
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