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Abstract. We present an automated approach to the problem of conn-
ectivity-based partitioning of brain structures using diffusion imaging.
White-matter fibres connect different areas of the brain, allowing them to
interact with each other. Diffusion-tensor MRI measures the orientation
of white-matter fibres in vivo, allowing us to perform connectivity-based
partitioning non-invasively. Our new approach leverages atlas-based seg-
mentation to automate anatomical labeling of the cortex. White-matter
connectivities are inferred using a probabilistic tractography algorithm
that models crossing pathways explicitly. The method is demonstrated
with the partitioning of the corpus callosum of eight healthy subjects.

1 Introduction

Diffusion-weighted MRI (DW-MRI) offers insight into the structure of white-
matter fibres in the brain. From DW-MRI we can infer the local fibre orien-
tation [I], and “tractography” algorithms use this information to reconstruct
entire fibre pathways [2]. The possibility to parcellate brain structures based on
their anatomical connectivity has important implications since it may help to
identify functionally distinct subregions of the brain [3,[4]. Correspondence be-
tween anatomical connectivity and functional activation has been shown in the
thalamus [5].

In this paper, we present an automated approach to brain region parcellation
based on connectivity to cortical grey-matter inferred from fibre tractography.
Compared to earlier efforts [3,[4[6], our work’s original contributions can be out-
lined as follows. Firstly, we leverage advances in atlas-based image segmentation
to produce cortex parcellation of subjects automatically. Secondly, we resolve
crossing fibres and use a novel model of uncertainty when two fibre bundles
are present within a voxel. We begin by reviewing the basic concepts of diffu-
sion imaging, tractography and connectivity-based parcellation. We then present
methods and results of our approach, followed by a discussion of future works.
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1.1 Diffusion-Tensor MRI

In diffusion-tensor MRI (DT-MRI) [7], we fit a Gaussian model of the displace-
ment density

p(r,t) = G(r;D,t) = ((415)3 det(D))*% exp(frTDflr(élt)*l) (1)

of diffusing water molecules after time ¢, where r is the displacement and D
is a second-order symmetric tensor, with eigenvalues A\; > A2 > A3 and corre-
sponding eigenvectors e1, es and es. A useful statistic from D is the fractional
anisotropy [8], which quantifies the anisotropy in the diffusion with a value be-
tween 0 (isotropic diffusion) and 1 (displacement is nonzero only along eq).

In voxels containing a single bundle of axonal fibres with a common orienta-
tion, A1 > Ay >~ A3, and the principal direction e; provides an estimate of the
direction of the fibre bundle. However, when the tissue structure in the voxel is
more complex, such as at fibre crossings, the Gaussian model is a poor approxi-
mation of p, and e; is not a reliable indicator of the fibre orientation. A variety
of techniques exist to resolve the orientations of crossing fibres [9].

1.2 Tractography

Diffusion-tensor MRI provides estimates of the local fibre orientation in each
voxel, which typically occupies a volume on the order of 10~?m3. Tractography
uses the local fibre-orientation measurements to reconstruct entire axonal paths.

Simple tractography calculates streamlines, which follow the local fibre-orien-
tation estimate from voxel to voxel. Streamline trajectories are sensitive to noise,
and authors often reduce false-positive connections by imposing limits on the
streamline curvature, which can be as low as 45 degrees, and by specifying a
minimum anisotropy for tracking to continue, since the fibre orientation is not
well defined at low anisotropy [10].

Monte-Carlo based probabilistic methods, such as those proposed by Behrens
et al [6] and Parker et al [I1], define a probability density function (PDF) on
the true fibre orientation in each voxel from the DW-MRI data. Streamlines
are tracked repeatedly from a single seed point. Each time, fibre orientations are
drawn from the PDF in each voxel. Over a large number of iterations, the process
yields a connection probability from the seed point to any other voxel v, which
is the fraction of streamlines that pass through v. The PDF is less concentrated
when there is high uncertainty in the fibre orientation, for example in voxels
with low anisotropy. This means that the set of streamlines passing through
regions of high uncertainty disperse rapidly, which results in lower connection
probability. Since probabilistic algorithms give a measurement of the confidence
in each potential connection, they do not require restrictive thresholds.

1.3 Connectivity-Based Parcellation of the Brain

Tractography, combined with anatomic labeling of cortex, makes possible the
non-invasive study of anatomical connectivity between distinct cortical struc-
tures. Connectivity-based parcellation is a method for segmenting a region of
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interest in the brain based on anatomical connectivity to other brain regions.
Given a segmentation of the brain into distinct labelled regions, the method uses
tractography to determine which labelled region is most likely to be connected
to each voxel in the region of interest.

The method can be performed using either deterministic or probabilistic
algorithms. However, the anisotropy threshold in deterministic algorithms limits
their ability to identify pathways near to grey-matter areas, such as cortex, and
the tight curvature restriction penalizes genuine pathways demonstrating high
curvature. Although such algorithms have been applied to parcellate the corpus
callosum [3,4], their known limitations require extra care in interpreting the
results they produce.

Behrens et al [6] use a probabilistic approach to partition the thalamus, a deep
grey-matter structure. Behrens uses a Bayesian method to define a single-fibre
PDF. The cortex is segmented into several functional zones, and probabilistic
streamlines are tracked from seed points in the thalamus. The cortical zone with
the highest connection probability to the seed point is the zone that contains
the most probabilistic streamlines. The thalamic segmentation is consistent with
previous postmortem histological studies of connectivity.

2 Method

We will refer to the brain region of interest as the seed region and each voxel in

the seed region as a seed point. We define the “connectivity map” for each seed

point as the collection of probabilistic streamlines emanating from the seed.
The algorithm to partition the seed region is as follows:

1. Label the grey-matter regions of the subject in the space of the diffusion
data.

2. Generate the connectivity map for each seed point from the diffusion data.

3. For each seed point, determine the labelled grey-matter region with the high-
est connection probability.

Steps 1 and 2 of the algorithm are described in detail below. In step 3, we use
the same approach as Behrens et al, which we described in section [[3l

2.1 Cortical Region Labeling

We require cortical regions to be defined in the same space as the connectivity
maps. However the diffusion-weighted images lack the resolution for accurate
delineation of cortex. Thus a high resolution T1-weighted image of the subject
is acquired, on which the cortical regions of interest are defined. These regions are
then transferred onto the diffusion data after co-registration of the T1-weighted
to a non-diffusion-weighted image acquired as part of the diffusion MRI sequence,
hereafter refered to as the [b=0] image.

One feature of our method is the automation of the cortical region labeling
step by warping an atlas into alignment with the T1-weighted image. Figure[ de-
picts the brain atlas and its warped version after registration to the T1-weighted
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Fig. 1. Atlas-based brain image segmentation. (Left) A surface rendering of the labeled
atlas used in this work. (Middle) The grey-matter labels for one hemisphere are shown
superimposed on the underlying structural image of the atlas. (Right) The atlas is
registered to the T1-weighted image of one subject, and the warped grey-matter labels
for one hemisphere are shown superimposed on the subject’s structural image. The
partition results of the subject’s corpus callosum is shown in figure 2l which also con-
tains the color-coded list of the cortical regions delineated in the atlas, further details
of which can be found in [I2].

image of one subject. To improve the quality of the co-registration between the
T1-weighted and [b=0] images, we also acquire a high-resolution EPI image,
which is used as an intermediate representation of the brain configuration in the
diffusion data space. Specifically, the T1-weighted image is non-rigidly aligned
to the EPI image, which in turn is non-rigidly registered to the [b=0] image.
The corresponding transformations are computed to enable atlas labels defined
on the T1-weighted image to be transferred to the [b=0] image. The non-rigid
registration algorithm used optimizes an intensity cross-correlation metric un-
der the constraints of a diffeomorphic transformation model in multiresolution
fashion [I3].

2.2 Generation of Probabilistic Streamlines

Before we generate probabilistic streamlines, we must complete three stages of
pre-processing of the DW-MRI data: first classifying voxels as containing zero,
one, or multiple fibre bundles, then determining fibre orientations in each voxel,
and finally calibrating fibre-orientation PDF's. The first two steps must be com-
pleted for each subject, while the last is performed once.

Fibre-Orientation Estimation. In a similar way to Parker and Alexander
[14], we use the spherical-harmonic classification and fibre-orientation estimation
algorithm of Alexander et al [I5] to determine which voxels contain zero, one,
or multiple fibre populations. When the algorithm detects multiple fibres, we
use a mixture of two zero-mean Gaussian distributions to model p, otherwise we
use the single Gaussian as in DT-MRI (Eq. [[). We use Levenberg-Marquardt
optimization to fit the parameters of the models to the data. We reduce the
complexity of the two-fibre model by assuming two Gaussian compartments in
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the voxel, mixed in equal proportion, and that the diffusion tensors are both
cylindrically symmetric, so Ay > As = A3. The principal eigenvector of each
tensor provides a separate fibre-orientation estimate.

Calibration of the Fibre-Orientation PDF. In single-tensor voxels, we use
an existing PDF proposed by Cook et al [16], based on the Watson distribu-
tion [I7]:

f(x)=W(xx;u,6) =M (%, g, n) ) exp (K(NTX)Q) 7 (2)

where M denotes the confluent hypergeometric function of the first kind and x
is a unit axis. The parameter x determines the concentration of samples about
the mean axis u. We construct a lookup table that predicts x from the tensor
shape parameters 2 5 and i—i These indices are sufficient to fully specify a tensor,
because the trace )\1 4+ A2 + A3 is approximately constant in brain tissue. For
each entry in the lookup table we synthesize measurements predicted by p(r) =
G(r,D,t), add complex Gaussian noise and fit the diffusion tensor to the noisy
measurements. We repeat this process to obtain a large sample of noisy principal
directions, x;, 1 <14 < 10,000, from which we estimate x numerically [17].

In voxels containing two fibre populations, we use a Watson PDF for each
fibre bundle. We calibrate the PDF by adding noise to the synthetic signal from
p(r) = 0.5(G(r,D1,t) + G(r,Dg,t)), but we compute fewer samples than for the
single-fibre PDF because generating two-fibre samples is more computationally
expensive. The resulting samples x;, 1 < ¢ < 4,000 contain both fibre-orientation
estimates from each trial. We estimate the concentration of both distributions
simultaneously by maximising the log-likelihood [ of the axes:

4000

(Wi, Wy) = Z log < (W1 (x5 py, K1) + W2(X1’N2aﬁ2}> . (3)

Previously, Parker and Alexander [I4] constructed a two-fibre PDF by sorting
the samples into two groups and fitting a Gaussian model to each. The objective
function in Eq. Bl requires no assignment of axes to a particular fibre, and hence
avoids any potential bias from incorrect assignment. We optimize {(W1, Ws) with
repeated runs of the Levenberg-Marquardt algorithm. We construct a lookup
table that gives k1 and ks as a function of the fractional anisotropy of each
tensor, and the angle at which the two principal directions cross.

Tractography. We use no anisotropy threshold in the tractography, and we
apply a minimal curvature threshold to prevent streamlines from looping back
on themselves and inflating the connection probability. We track by following the
principal direction in each voxel, without interpolation. In voxels containing two
fibres, we make a probabilistic choice of whether to sample from W or W5 based
on the previous direction of the streamline, x,. The probability of sampling W}
is p1 = Wi (xp; py, 1)W1 (Xp; p1, £1) + Wa(Xp; o, £2)] 1, and the probability of
choosing Ws is (1 — p1). We track fibres from the seed points in both directions,



An Automated Approach to Connectivity-Based Partitioning 169

and we stop tracking if the streamline either curves by more than 80° over the
length of one voxel, reaches the brain surface, or intersects itself.

3 Results and Discussions

We demonstrate the method by partitioning the corpus callosum (CC), the struc-
ture through which the two cerebral hemispheres communicate, using the brain
images from 8 healthy volunteers. The diffusion imaging sequence uses 60 dif-
fusion weighted measurements in each voxel. The first 54 measurements are at
a fixed | q | giving b = 1050smm~2, with the gradient directions spread evenly
on the hemisphere to minimise dependence of the tensor upon the orientation
of the tissue relative to the gradient directions. Six of the 54 diffusion-weighted
measurements are repeated with b = 260smm ™2, and six measurements are made
with b = 0. We estimate the signal to noise ratio in each [b = 0] image to be
approximately 14 in white-matter.

Because the fibre bundles originating from the CC extend to both the left
and right cortex, we construct two connectivity maps for each seed point. Each
map represents the connections to one side of the brain and is used to derive the
partitioning for the corresponding hemisphere. An example of the partitioning
is shown in figure

A useful statistic is the relative sizes of the partitions which are computed
for all subjects and shown in fig. Pl Evidently there are four primary partitions
in the CC. Although this is consistent with the earlier study [3], in our study
the cortical connectivity is better localized because we have chosen a signifi-
cantly finer cortical labeling. The voxels within these partitions are most likely
to connect to the superior frontal gyrus, the superior parietal gyrus, the occipi-
tal gyrus and the parahippocampal gyrus, respectively. On average, over all the
controls, the sizes of the largest partitions found, computed as a percentage of
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Fig. 2. The partitioning of the corpus callosum. On the left is the partitioning of the
subject used in figure[I] for the left (top) and right (bottom) hemispheres. In the centre
are the relative sizes of each partition as a percentage of the total area of the corpus
callosum, for the left and right connectivity maps from all 8 subjects. On the right is
the color-coded list of the cortical regions delineated in the atlas shown in fig. [Tl
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the size of the corpus callosum, are 53%, 22%, 7% and 5% for the left hemi-
sphere, and are 55%, 26%, 5% and 5% for the right hemisphere. Despite the
finer cortical labelling scheme, it appears that the majority of the connections
through the corpus callosum are restricted to several large cortical regions. Ad-
ditionally, several regions, notably the middle and inferior temporal gyrus, the
occipitotemporal gyrus and the supramarginal gyrus, are not found in the par-
titions. It is possible that the connections to these regions are mediated through
other regions, either by ipsilateral or U-fiber connections. Equally likely is that
other connections exist across the corpus callosum but are more difficult to track
reliably using current methods. Certain connections may be relatively difficult
to track for several reasons, for example the fibre bundles may be smaller, or the
bundles may extend through complex fibre architecture such as fibre crossings.

Also worth noting is the difference in the partitioning results from the left
and the right hemispheres. postmortem studies [I8] show that there are wide-
spread heterotopic commissure connections across the corpus callosum. Parti-
tioning studies such as this have the potential to offer new evidence of the ex-
istence of the heterotopic connections and, furthermore, possibly locate where
such connections traverse the corpus callosum.

4 Conclusion

We have presented a method for parcellating brain structures based on con-
nectivity maps derived from diffusion MRI data. The method is demonstrated
with the partitioning of the corpus callosum. We construct connectivity maps
using a novel probabilistic tractography algorithm that resolves crossing fibres.
One feature of our method is the automated cortical region labeling based on
our atlas-based and registration-driven segmentation technique. Future work in-
cludes quantitatively assessing the quality of the automated labeling compared
to a manual delineation of the cortex.
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