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Abstract. Many data mining applications require a ranking, rather than a mere
classification, of cases. Examples of these applications are widespread, includ-
ing Internet search engines (ranking of pages returned) and customer relationship
management (ranking of profitable customers). However, little theoretical foun-
dation and practical guideline have been established to assess the merits of dif-
ferent rank measures for ordering. In this paper, we first review several general
criteria to judge the merits of different single-number measures. Then we pro-
pose a novel rank measure, and compare the commonly used rank measures and
our new one according to the criteria. This leads to a preference order for these
rank measures. We conduct experiments on real-world datasets to confirm the
preference order. The results of the paper will be very useful in evaluating and
comparing rank algorithms.

1 Introduction

Ranking of cases is an increasingly important way to describe the result of many data
mining and other science and engineering applications. For example, the result of doc-
ument search in information retrieval and Internet search is typically a ranking of the
results in the order of match. This leaves two issues to be addressed. First, given two
orders of cases, how do we design or choose a measure to determine which order is
better? Second, given two different rank measures of ordering, how do we tell which
rank measure is more desirable?

In previous research, the issue of determining which order is better is usually ad-
dressed using accuracy and its variants, such as recall and F-measures, which are typi-
cally used in information retrieval. More recently, AUC (Area Under Curve) of the ROC
(Receiver Operating Characteristics) has gained an increasing acceptance in comparing
learning algorithms [1] and constructing learning models [2,3]. Bradley [4] experimen-
tally compared popular machine learning algorithms using both accuracy and AUC, and
found that AUC exhibits several desirable properties when compared to the accuracy.

However, accuracy is traditionally designed to judge the merits of classification
results, and AUC is simply used as a replacement of accuracy without much reasoning
for why it is a better measure, especially for the case of ordering. The main reason
for this lack of understanding is that up to now, there has been no theoretical study on
whether any of these measures work better than others, or whether there are even better
measures in existence.
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In this paper, we first review our previous work [5] on general criteria to compare
two arbitrary single-number measures (see Section 2.1). Then we compare six rank
measures for ordering using our general criteria. Our contributions in this part consist
of a novel measure for the performance of ordering (Section 2.4), and a preference or-
der discovered for these measures (Section 3.1). The experiments on real-world datasets
confirm our analysis, which show that better rank measures are more sensitive in com-
paring rank algorithms (see Section 3.2).

2 Rank Measures for Ordering

In this section, we first review the criteria proposed in our previous work to compare two
arbitrary measures. We then review five commonly used rank measures, and propose
one new rank measure, OAUC. Then based on the comparison criteria, we will make
a detailed comparison among these measures, which leads to a preference order of the
six rank measures. Finally, we perform experiments with real-world data to confirm our
conclusions on the preference order. The conclusions of the paper are significant for
future machine learning and data mining applications involving ranking and ordering.

2.1 Review of Formal Criteria for Comparing Measures

In [5] the degree of consistency and degree of discriminancy of two measures are pro-
posed and defined. The degree of consistency between two measures f and g, denoted
as Cf,g, is simply the fraction (probability) that two measures are consistent over some
distribution of the instance space. Two measures are consistent when comparing two
objects a and b, if f stipulates that a is better than b, g also stipulates that a is better
than b. [5] define that two measures f and g are consistent iff the degree of consistency
Cf,g > 0.5. That is, f and g are consistent if they agree with each other on over half of
the cases.

The degree of discriminancy of f over g, denoted as Df/g, is defined as the ratio of
cases where f can tell the difference but g cannot, over the cases where g can tell the
difference but f cannot. [5] define that a measure f is more discriminant (or finer) than
g iff D f/g > 1. That is, f is finer than g if there are more cases where f can tell the
difference but g cannot, than g can tell the difference but f cannot.

2.2 Notation of Ordering

We will use some simple notations to represent ordering throughout this paper. Without
loss of generality, for n examples to be ordered, we use the actual ordering position of
each example as the label to represent this example in the ordered list. For example,
suppose that the label of the actual highest ranked example is n, the label of the actual
second highest ranked example is n− 1, etc. We assume the examples are ordered in-
crementally from left to right. Then the true-order list is l = 1,2, . . . ,n. For any ordered
list generated by an ordering algorithm, it is a permutation of l. We use π(l) to denote
the ordered list generated by ordering algorithm π. π(l) can be written as a1,a2, . . . ,an,
where ai is the actual ordering position of the example that is ranked ith in π(l).
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Table 1. An example of ordered lists

l 1 2 3 4 5 6 7 8

a1 a2 a3 a4 a5 a6 a7 a8

π(l) 3 6 8 1 4 2 5 7

Table 1 gives an instance of ordered lists with eight examples. In this table, l is the
true-order list and π(l) is the ordered list generated by an ordering algorithm π. In π(l)
from left to right are the values of ai. We can find that a1 = 3, a2 = 6, . . ., a8 = 7.

2.3 Previous Rank Measures for Ordering

We first review five most commonly used rank measures. Later we will invent a new
rank measure which we will evaluate among the rest.

We call some of the rank measures “true-order” rank measures, because to obtain
the evaluation values, we must know the true order of the original lists. Some other
rank measures, however, are not true-order rank measures. They do not need the true
order to obtain evaluation values; instead, only a “rough” ordering is sufficient. For
example, accuracy and AUC are not true-order rank measures. As long as we know the
true classification, we can calculate their values. In a sense, positive examples can be
regarded as “the upper half”, and negative examples are the “lower half” in an ordering,
and such a rough ordering is sufficient to obtain AUC and accuracy.

1. Euclidean Distance (ED)
If we consider the ordered list and the true order as a point (a1,a2, . . . ,an) and a
point (1,2, . . . ,n) in an n-dimensional Euclidean space, then ED is the Euclidean
Distance between these two points, which is

√
∑n

i=1(ai − i)2. For simplicity we use
the squared value of Euclidean distance as the measure. Then ED = ∑n

i=1 (ai − i)2.
Clearly, ED is a true-order rank measure.
For the example in Table 1, It is easy to obtain that ED = (3−1)2 +(6−2)2 +(8−
3)2 +(1−4)2 +(4−5)2 +(2−6)2 +(5−7)2 +(7−8)2 = 76.

2. Manhattan Distance (MD)
This measure MD is similar to ED except that here we sum the absolute values
instead of sum squared values. It is also a true-order rank measure. For our order
problem MD = ∑n

i=1 |ai − i|. For the example in Table 1, it is easy to obtain that
MD = |3−1|+ |6−2|+ |8−3|+ |1−4|+ |4−5|+ |2−6|+ |5−7|+ |7−8|= 22.

3. Sum of Reversed Number (SRN)
This is roughly the sum of the reversed pairs in the list. That is, SRN = ∑n

i=1 s(i). It
is clearly a true-order measure.
For the ith example, its reversed number s(i) is defined as the number of examples
whose positions in π(l) are greater than i but the actual ranked positions are less
than i. For the example in Table 1, we can find that the examples of 1 and 2 are both
ranked higher than the first example 3 in π(l). Thus s(1) = 1 + 1 = 2. Similarly
we have s(2) = 4, s(3) = 5, etc. Therefore the SRN for the ordered list π(l) is
SRN = 2 + 4 + 5 + 0+1+0+0+0 = 12.
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4. Area Under Curve (AUC)
The Area Under the ROC Curve, or simply AUC, is a single-number measure
widely used in evaluating classification algorithms, and it is not a true-order mea-
sure for ranking. To calculate AUC for an ordered list, we only need the true classifi-
cation (positive or negative examples). For a balanced ordered ranked list with n ex-
amples (half positive and half negative), we treat any example whose actual ranked
position is greater than n

2 as a positive example; and the rest as negative. From left
to right we assume the ranking positions of positive examples are r1,r2, . . . ,r� n

2 �.

Then AUC =
∑ari >n/2(ri−i)

n2 [6].
In Table 1, 5, 6, 7, and 8 are positive examples positioned at 2, 3, 7, and 8 respec-
tively. Thus, AUC = (2−1)+(3−2)+(7−3)+(8−4)

4×4 = 5
8 .

5. Accuracy (acc)
Like AUC, accuracy is also not a true-order rank measure. Similar to AUC, if we
classify examples whose rank position above half of the examples as positive, and
the rest as negative, we can calculate accuracy easily as acc = t p+tn

n , where t p and tn
are the number of correctly classified positive and negative examples respectively.
In the ordered list π(l) in Table 1, 5, 6, 7, and 8 are positive examples, others are
negative examples. Thus t p = 2, tn = 2. acc = 2+2

8 = 1
2 .

2.4 New Rank Measure for Ordering

We propose a new measure called Ordered Area Under Curve (OAUC), as it is similar
to AUC both in meaning and calculation. The only difference is that each term in the
formula is weighted by its true order, and the sum is then normalized. Thus, OAUC is a
true-order measure. This measure is expected to be better than AUC since it “spreads”
its values more widely compared to AUC.

OAUC is defined as follows:

OAUC = ∑ ari(ri − i)

� n
2�∑

� n
2 �

i=1 (� n
2�+ i)

In the ordered list in Table 1, the positive examples are 5, 6, 7, 8 which are positioned
at 7, 2, 8 and 3 respectively. Thus r1 = 2, r2 = 3, r3 = 7, r4 = 8, and ar1 = 6, ar2 = 8,

ar3 = 5,ar4 = 7. OAUC = 6(2−1)+8(3−2)+5(7−3)+7(8−4)
4((4+1)+(4+2)+(4+3)+(4+4)) = 31

52 .

3 Comparing Rank Measures for Ordering

We first intuitively compare some pairs of measures and analyze whether any two mea-
sures satisfy the criteria of consistency and discriminancy. To begin with, we consider
ED and MD because these two measures are quite similar in their definitions except that
ED sums the squared distance while MD sums the absolute value. We expect that these
two measures are consistent in most cases. On the other hand, given a dataset with n
examples there are a total of O(n3) different ED values and O(n2) different MD values.
Thus ED is expected to be more discriminant than MD. Therefore we expect that ED is
consistent with and more discriminant than MD.
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For AUC and OAUC, since OAUC is an extension of AUC, intuitively we expect
that they are consistent. Assuming there are n1 negative examples and n0 positive ex-
amples, the different values for OAUC is n1 ∑n0

i=1 (n1 + i), which is greater than the
different values of AUC (n0n1). We can also expect that OAUC is more discriminant
and therefore better than AUC.

However for the rest of the ordering measures we cannot make these intuitive claims
because they have totally different definitions or computational methods. Therefore, in
order to perform an accurate and detailed comparison and to verify or overturn our
intuitions, we will conduct experiments to compare all measures.

3.1 Comparing Rank Measures on Artificial Datasets

To obtain the average degrees of consistency and discriminancy for all possible ranked
lists, we use artificial datasets which consist of all possible ordered list of length 8. 1

We assume that the ordered lists are uniformly distributed. We exhaustively compare
all pairs of ordered lists and calculate the degree of consistency and degree of discrimi-
nancy between two rank measures for ordering.

Table 2 lists the degree of consistency between every pair of six rank measures
for ordering. The number in each cell represents the degree of consistency between
the measures in the same row and column of the cell. We can find that the degree
of consistency between any two measures are greater than 0.5, which indicates that
these measures are “similar” in the sense that they are more likely to be consistent than
inconsistent.

Table 3 shows the degree of discriminancy among all 6 rank measures. The number
in the cell of the ith row and the jth column is the degree of discriminancy for the
measure in ith row over the one in jth column.

From these two tables we can draw the following conclusions. First, these results
verified our previous intuitive conclusions about the relations between ED and MD, and
between AUC and OAUC. The degree of consistency between ED and MD is 0.95, and
between AUC and OAUC 0.99, which means that ED and MD, and AUC and OAUC
are highly consistent. The degree of discriminancy for ED over MD, and for OAUC
over AUC are greater than 1, which means that ED is better than MD, and OAUC is
better than AUC.

Table 2. Degree of consistency between pairs of rank measures for ordering

AUC SRN MD ED OAUC acc
AUC 1 0.88 0.89 0.87 0.99 0.98
SRN 0.88 1 0.95 0.98 0.89 0.91
MD 0.89 0.95 1 0.95 0.90 0.95
ED 0.87 0.98 0.95 1 0.88 0.90

OAUC 0.99 0.89 0.90 0.88 1 0.97
acc 0.98 0.91 0.95 0.90 0.97 1

1 There are n! different ordered lists for length n, so it is infeasible to enumerate longer lists.
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Table 3. Degree of discriminancy between pairs of rank measures for ordering

AUC SRN MD ED OAUC acc
AUC 1 0.88 1.42 0.21 0.0732 14.0
SRN 1.14 1 1.84 0.242 0.215 9.94
MD 0.704 0.54 1 0.117 0.116 6.8
ED 4.76 4.13 8.55 1 0.87 38.2

OAUC 13.67 4.65 8.64 1.15 1 94.75
acc 0.071 0.10 0.147 0.026 0.011 1

Second, since all values of the degree of consistency among all measures are greater
than 0.5, we can decide which measure is better than another only based on the value
of degree of discriminancy. Recall (Section 2.1) that a measure f is better than another
measure g iff Cf,g > 0.5 and Df/g > 1. The best measure should be the one whose degrees
of discriminancy over all other measures are greater than 1. From Table 3 we can find
that all the numbers in the OAUC row are greater than 1, which means that the measure
OAUC’s degrees of discriminancy over all other measures are greater than 1. Therefore
OAUC is the best measure. In the same way we can find that ED is the second best
measure, and SRN is the third best. The next are AUC, MD, and acc is the worst.

Finally we can obtain the following preference order of for all six rank measures for
ordering:

OAUC � ED � SRN � AUC � MD � acc

From the preference order we can conclude that OAUC, a new measure we design
based on AUC, is the best measure. ED is the close, second best. The difference for these
two measures are not very large (the degree of discriminancy for OAUC over ED is only
1.15). Therefore we should use OAUC and ED instead of others to evaluate ordering
algorithms in most cases. Further, the two none-true-order classification measures AUC
and accuracy do not perform well as compared with the true-order measures ED and
SRN. This suggests that generally we should avoid using classification measures such
as AUC and accuracy to evaluate ordering. Finally, MD is the worst true-order measure,
and it is even worse than AUC. It should be avoided.

3.2 Comparing Rank Measures with Ranking Algorithms

In this section, we perform experiments to compare two classification algorithms in
terms of the six rank measures. What we hope to conclude is that the better rank mea-
sures (such as OAUC and ED) would be more sensitive to the significance test (such
as the t-test) than other less discriminant measures (such as MD and accuracy). That is,
OAUC and ED are more likely to tell the difference between two algorithms than MD
and accuracy can. Note that here we do not care about which rank algorithm predicts
better; we only care about the sensitivity of the rank measures that are used to compare
the rank algorithms. The better the rank measure (according to our criteria), the more
sensitive it would be in the comparison, and the more meaningful the conclusion would
be for the comparison.



Rank Measures for Ordering 509

We choose Artificial Neural Networks (ANN) and Instance-Based Learning algo-
rithm (IBL) as our algorithms as they can both accept and produce continuous tar-
get. The ANN that we use has one hidden layer; the number of nodes in the hidden
layer is half of the input layer (the number of attributes). We use real-world datasets to
evaluate and compare ANN and IBL with the six rank measures. We select three real-
world datasets Wine, Auto-Mpg and CPU-Performance from the UCI Machine Learning
Repository [7].

In our experiments, we run ANN and IBL with the 10-fold cross validation on the
training datasets. For each round of the 10-fold cross validation we train the two algo-
rithms on the same training data and test them on the same testing data. We measure
the testing data with six different rank measures (OAUC, ED, SRN, AUC, MD and
acc) discussed earlier in the paper. We then perform paired, two-tailed t-tests on the 10
testing datasets for each measure to compare these two algorithms.

Table 4 shows the significance level in the t-test. 2 The smaller the values in the table,
the more likely that the two algorithms (ANN and IBL) are significantly different, and the
more sensitive the measure is when it is used to compare the two algorithms. Normally
a threshold is set up and a binary conclusion (significantly different or not) is obtained.
For example, if we set the threshold to be 0.95, then for the artificial dataset, we would
conclude that ANN and IBL are statistically significantly different in terms of ED, OAUC
and SRN, but not in terms of AUC, MD and acc. However, the actual significance level
in Table 4 is more discriminant for the comparison. That is, it is “a better measure” than
the simple binary classification of being significantly different or not.

Table 4. The significance level in the paired t-test when comparing ANN and IBL using different
rank measures

Measures Wine Auto-mpg CPU
OAUC 0.031 8.64×10−4 1.48×10−3

ED 0.024 1.55×10−3 4.01×10−3

SRN 0.053 8.89×10−3 5.91×10−3

AUC 0.062 5.77×10−3 8.05×10−3

MD 0.053 0.0167 5.97×10−3

acc 0.126 0.0399 0.0269

From Table 4 we can obtain the preference order from the most sensitive measure
(the smallest significance level) to the least sensitive measure (the largest significance
level) for each dataset is:

– Wine: ED, OAUC, SRN = MD, AUC, acc.
– Auto-mpg: OAUC, ED, AUC, SRN, MD, acc.
– CPU-Performance: OAUC, ED, SRN, MD, AUC, acc.

These preference orders are roughly the same as the preference order of these mea-
sures discovered in the last section:

2 The confidence level for the two arrays of data to be statistically different is one minus the
values in the table.
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OAUC � ED � SRN � AUC � MD � acc

The experimental results confirm our analysis in the last section. That is, OAUC
and ED are the best rank measures for evaluating orders. In addition, MD and accu-
racy should be avoided as rank measures. These conclusions will be very useful for
comparing and constructing machine learning algorithms for ranking, and for applica-
tions such as Internet search engines and data mining for CRM (Customer Relationship
Management).

4 Conclusions

In this paper we use the criteria proposed in our previous work to compare five com-
monly used rank measures for ordering and a new proposed rank measure (OAUC). We
conclude that OAUC is actually the best rank measure for ordering, and it is closely fol-
lowed by the Euclidian distance (ED). Our results indicate that in comparing different
algorithms for the order performance, we should use OAUC or ED, and avoid the least
sensitive measures such as Manhattan distance (MD) and accuracy.

In our further work, we plan to improve existing rank learning algorithms by opti-
mizing the better measures, such as OAUC and ED, discovered in this paper.
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