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Abstract. Protein-protein interactions play an important role in many
fundamental biological processes. Computational approaches for predict-
ing protein-protein interactions are essential to infer the functions of
unknown proteins, and to validate the results obtained of experimental
methods on protein-protein interactions. We have developed an approach
using Inductive Logic Programming (ILP) for protein-protein interac-
tion prediction by exploiting multiple genomic data including protein-
protein interaction data, SWISS-PROT database, cell cycle expression
data, Gene Ontology, and InterPro database. The proposed approach
demonstrates a promising result in terms of obtaining high sensitiv-
ity/specificity and comprehensible rules that are useful for predicting
novel protein-protein interactions. We have also applied our method to a
number of protein-protein interaction data, demonstrating an improve-
ment on the expression profile reliability (EPR) index.

1 Introduction

The interaction between proteins is fundamental to a broad spectrum of biolog-
ical functions, including regulation of metabolic pathways, immunologic recog-
nition, DNA replication, progression through the cell cycle, and protein synthe-
sis. Therefore, mapping the organism-wide protein-protein interaction network
plays an important role in functional inference of the unknown proteins. With
the development of genomic technology, new experimental methods have vastly
increased the number of protein-protein interactions for various organisms. An
enormous amount of protein-protein interaction data have been obtained re-
cently for yeast and other organisms using high-throughput experimental ap-
proaches such as yeast two-hybrid [12], affinity purification and mass spectrom-
etry [2], phage display [22]. However, a potential difficulty with these kinds of
data is a prevalence of false positive (interactions that are seen in an experiment
but never occur in the cell or are not physiologically relevant) and false nega-
tives (interactions that are not detected but do occur in the cell). As such, the
prediction of protein-protein interactions using computational approaches can
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be used to validate the results of high-throughput interaction screens and used
to complement the experimental approaches.

There have been a number of studies using computational approaches ap-
plied to predicting interactions. Bock and Gough [3] applied a Support Vector
Machine learning system to predict directly protein-protein interactions from pri-
mary structure and associated data. Jansen et al. [13] used a Bayesian networks
approach for integrating weakly predictive genomic features into reliable predic-
tions of protein-protein interactions. A different approach is based on interacting
domain pairs, attempting to understand protein-protein interactions at the do-
main level. Sprinzak and Margalit [23] proposed the AM (Association Method)
for computing the score for each domain pair. Deng et al. [9] estimated the prob-
abilities of interactions between every pair of domains using an EM algorithm,
using the inferred domain-domain interactions to predict interactions between
proteins. The major drawback of this approach is that there are currently no ef-
ficient experimental methods for detecting domain-domain interactions. Also, in
[11], Grigoriev demonstrated that there is a significant relationship between gene
expression and protein interactions on the proteome scale, finding that the mean
correlation coefficients of gene expression profiles between interacting proteins
are higher than those between random protein pairs.

In this paper, we present an approach for predicting genome-wide protein-
protein interactions in yeast using the ILP system Aleph [1], a successor to
Progol [16]. Unlike the other work, our approach is able to exploit the relation-
ships among features of multiple genomic data, and to induce rules that give
possible insight into the binding mechanism of the protein-protein interactions.
Concerning rule-based methods using protein-protein interaction data, Oyama et
al. [21] applied Association Rule Mining to extracting rules from protein-protein
interaction data, however, the goal of this work is descriptive while our aim is
to generate rules for predictive purposes.

2 ILP and Bioinformatics

Inductive Logic Programming (ILP) is the area of AI which is built on a foun-
dation laid by research in machine learning and computational logic. ILP deals
with the induction of hypothesized predicate definitions from examples and back-
ground knowledge. Logic programs are used as a single representation for exam-
ples, background knowledge and hypotheses. ILP is differentiated from most
other forms of Machine Learning (ML) both by its use of an expressive repre-
sentation language and its ability to make use of logically encoded background
knowledge. This has allowed successful applications of ILP in areas such as molec-
ular biology and natural language which both have rich sources of background
knowledge and both benefit from the use of an expressive concept representation
languages [17].

It is considered that one of the most important application domains for ma-
chine learning in general is bioinformatics. There have been many ILP systems
that are successfully applied to various problems in bioinformatics. ILP is partic-
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ular suitable for bioinformatics tasks because of its ability to take into account
background knowledge and work directly with structured data. The ILP system
GOLEM [18] was used to model the structure activity relationships of trimetho-
prim analogues binding to dihydrofolate reductase [14]. A study of discriminating
molecules with positive mutagenicity from those with negative mutagenicity [15]
has been conducted using Progol [16], another ILP system. ILP has also been ap-
plied to many other tasks in bioinformatics, such as protein secondary structure
prediction [19] and protein fold recognition [26].

3 Using ILP for Predicting Protein-Protein Interactions

In this section, we present an algorithm for discovering rules using ILP. We use
a multi-relational data mining approach to discover rules from multiple genomic
data concerning protein-protein interactions. At present, we are using five kinds
of genomic data:

1. SWISS-PROT [5], containing description of the function of a protein, its
domains structure, post-translational modifications, variants, and so on.

2. MIPS [4], containing highly accurate protein interaction data for yeast.

Algorithm 1 Discovering rules for protein-protein interactions
Require:

Set of protein interacting pairs I = {(pi, pj)}, pi ∈ P , pj ∈ P , where P is the set
of proteins occurred

Number of negative examples N
Multiple genomic data used for extracting background knowledge

(SSWISS−PROT , SMIPS , Sexpression, SGO , SInterPro)
Ensure: Set of rules R for protein-protein interaction prediction

1: R := ∅, Spos := I
2: Extract protein annotation information concerning each p of P from SSWISS−PROT

3: Extract protein information concerning each p of P from SMIPS

4: Call GENERATE-NEGATIVES for artificially generating N negative examples
5: Extract the expression correlation coefficients from Sexpression for every protein

pairs (pk, pl), where pk ∈ P, pl ∈ P .
6: Extract all is a and part of relations (g1, g2), g1 ∈ GP , g2 ∈ GP , where GP is the

set of GO terms associated with P
7: Extract all relations between InterPro domains and GO terms (dInterPro, g) from

SInterPro, dInterPro ∈ DInterPro
P , g ∈ GP , where DInterPro

P is the set of InterPro
domains associated with P

8: Select a positive example at random
9: Saturate it to find the most specific clause that entails this example

10: Do top-down search for selecting the best clause c and add c to R
11: Remove covered positive examples
12: If there remain positive examples, go to step 8
13: return R
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3. Gene expression data [24], containing the correlation of mRNA amounts
with temporal profiles during the cell cycle.

4. Gene Ontology (GO) [20], containing the relations between GO terms.
5. InterPro [7], containing the relations between InterPro domains and their

corresponding GO terms.

Our algorithm 1 consists of two main parts. The first part (step 1 to 7) is con-
cerned with generating negative examples and extracting background knowledge
from multiple genomic data. The second part (step 8 to 12) deals with inducing
rules given the lists of positive, negative examples and background knowledge
using Aleph [1]. Aleph is an ILP system that uses a top-down ILP covering
algorithm, taking as input background information in the form of predicates,
a list of modes declaring how these predicates can be chained together, and a
designation of one predicate as the head predicate to be learned. Aleph is able
to use a variety of search methods to find good clauses, such as the standard
methods of breadth-first search, depth-first search, iterative beam search, as well
as heuristic methods requiring an evaluation function. We use the default evalu-
ation function coverage (the number of positive and negative examples covered
by the clause) in our work.

Algorithm 2 GENERATE-NEGATIVES
Require:

Number of negative examples N and SMIPS

Ensure: Set of negative examples Sneg consisting of N protein pairs

1: n := 0, Sneg := ∅
2: repeat
3: Select an arbitrary pair (pk, pl), where pk ∈ P, pl ∈ P
4: Find the sets of subcellular location Lk and Ll of pk and pl from SMIPS

5: if Lk ∩ Ll = ∅ then
6: Add (pk, pl) to Sneg

7: n := n + 1
8: endif
9: until n = N

10: return Sneg

In this paper, we want to learn the following target predicate

interact(Protein, Protein): the instances of this relation represent the in-
teraction between two proteins.

For background knowledge, we shortly denote all predicates used by each ge-
nomic data. Note that Aleph uses mode declarations to build the bottom clause,
and there are three types of variables: (1) an input variable (+), (2) an output
variable (−), and (3) a constant term (#). Table 1 shows the list of predicates
used as background knowledge for each genomic data.
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4 Experiments

4.1 Data Preparation

We used the core data of the Yeast Interacting Proteins Database provided by Ito
[6] as positive examples. Ito et al. [12] conducted comprehensive analysis using their
systemto examine two-hybrid interactions inall possible combinationsbetween the
6000 proteins of the budding yeast Saccharomyces cerevisiae. Among 4,549 inter-
actions detected using yeast-hybrid analysis, the “core” data consist of 841 inter-
actions with more than two IST hits1, accounting for 18.6%of the whole data. Note
that the core data used in this paper is a subset of protein-protein interactions of
MIPS [4] database, which is considered as the gold-standard for positive examples
in [13]. A negatives gold-standard is defined similar to [13] in which negative exam-
ples are synthesized from lists of proteins in separate subcellular compartments.

We employ our approach to predict protein-protein interactions. We used the
core data of Ito data set [6] mentioned above as positive examples, selecting at
random 1000 protein pairs whose elements are in separate subcellular compart-
ments as negative examples. Each interaction in the interaction data originally
shows a pair of bait and prey ORF (Open Reading Frame)2 some of which are
not found in SWISS-PROT database. After removing all interactions in which
either bait ORF or prey ORF is not found in SWISS-PROT, we obtained 602
interacting pairs from the original 841 pairs.

4.2 Analysis of Sensitivity/Specificity

To validate our proposed method, we conducted a 10-fold cross-validation test,
comparing cross-validated sensitivity and specificity with those obtained by using
AM [23] and SVM method. The AM method calculates a score dkl to each domain
pair (Dk, Dl) as the number of interacting protein pairs containing (Dk, Dl)
divided by the number of protein pairs containing (Dk, Dl).

In the approach of predicting protein-protein interactions based on domain-
domain interactions, it can be assumed that domain-domain interactions are
independent and two proteins interact if at least one domain pairs of these two
proteins interact. Therefore, the probability pij that two proteins Pi and Pj

interact can be calculated as

pij = 1 −
∏

Dk∈Pi,Dl∈Pj

(1 − dkl)

We implemented the AM and SVM methods in order to compare with our
proposed method. We used the PFAM domains extracted from SWISS-PROT
and superdomains, i.e. proteins without any domain information. The probability
threshold is set to 0.05 for the simplicity of comparison. For SVM method, we
1 ISThit means how many times the corresponding interaction was observed. The higher

IST number, the much more reliable the corresponding interaction is.
2 ORF is a series of codons which can be translated into a protein.
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Table 1. Predicates used as background knowledge in various genomic data

Genomic data Background Knowledge
SWISS-PROT haskw(+Protein,#Keyword): A protein contains a keyword

hasft(+Protein,#Feature): A protein contains a feature
ec(+Protein,#EC): An enzyme code for a protein
pfam(+Protein,-PFAM Domain)
A protein contains a Pfam domain
interpro(+Protein,-InterPro Domain)
A protein contains a InterPro domain
pir(+Protein,-PIR Domain)
A protein contains a Pir domain
prosite(+Protein,-PROSITE Domain)
A protein contains a Prosite domain
go(+Protein,-GO Term)
A protein contains a GO term

MIPS subcellular location(+Protein,#Subcellular Structure)
Relation between proteins and the subcellular structures
in which they are found.
function category(+Protein,#Function Category)
A protein which is categorized to a certain function category
protein category(+Protein,#Protein Category)
A protein which is categorized to a certain protein category
phenotype category(+Protein,#Phenotype Category)
A protein which is categorized to a certain phenotype category
complex category(+Protein,#Complex Category)
A protein which is categorized to a certain complex category

Gene expression correlation(+Protein,+Protein,-Expression)
Expression correlation coefficient between two proteins

GO is a(+GO Term,-GO Term)
is a relation between two GO terms
part of(+GO Term,-GO Term)
part of relation between two GO terms

InterPro interpro2go(+InterPro Domain,-GO Term)
Mapping of InterPro entries to GO

used SV M light [25] for learning, and used the same set of PFAM domains and
superdomains as used in AM method. The linear kernel with default value of
the parameters was used. For Aleph, we selected minpos = 2 and noise = 0,
i.e. the lower bound on the number of positive examples to be covered by an
acceptable clause is 2, and there are no negative examples allowed to be covered
by an acceptable clause. We also used the default evaluation function coverage
which is defined as P −N , where P , N are the number of positive and negative
examples covered by the clause.

Table 2 shows the performance of Aleph compared with AM and SVM meth-
ods. The sensitivity of a test is described as the proportion of true positives
it detects of all the positives, measuring how accurately it identifies positives.
On the other hand, the specificity of a test is the proportion of true negatives
it detects of all the negatives, thus is a measure of how accurately it identifies
negatives. It can be seen from this Table that the proposed method showed a
considerably high sensitivity and specificity given a certain number of negative
examples. The number of negative examples should be chosen neither too large
nor too small to avoid the imbalanced learning problem. At present, we did not
compare our approach with EM method [9] in which they obtained 42.5% speci-
ficity and 77.6% sensitivity using the combined Uetz and Ito protein-protein
interaction data.
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Table 2. Performance of Aleph compared with AM and SVM methods. The sensitivity
and specificity are obtained for each randomly chosen set of negative examples. The
last column demonstrates the number of rules obtained using our proposed method
with the minimum positive cover is set to 2.

# Neg Sensitivity Specificity # Rules
AM SVM Aleph AM SVM Aleph

100 0.70 0.99 0.90 0.46 0.01 0.44 27

500 0.68 0.54 0.79 0.42 0.61 0.84 63

1000 0.71 0.32 0.73 0.39 0.88 0.93 62

2000 0.69 0.26 0.69 0.38 0.95 0.96 58

4000 0.69 0.15 0.68 0.39 0.98 0.99 68

4.3 Rule Analysis

Figure 1 demonstrates a number of selective rules obtained when providing 602
positive examples and 1000 randomly chosen negative examples. Those rules are
manually ranked using the difference between positive and negative coverages. It
can be seen that although some of rules can be obtained using other propositional
learning methods, some other rules can only be obtained using ILP.Rule 1 supports
the approach using domain-domain interactions, demonstrating that two proteins
interact if they share a common PFAM domain (81 cases covered among a total of
602 positive examples). Some rules obtained also match the result reported in [11]
that the mean correlation coefficients of gene expression profiles between interact-
ing proteins are higher than those between random protein pairs.

Using the Gene Ontology Term Finder tool [10], we also searched for signifi-
cant GO terms, or parents of the GO terms used to describe the pair of protein
interaction of each positive example covered by those rules in Figure 1. As a
result, it can be found that rule 5, 6, 10, 12, 13, 14 are relevant with very high
confidence, rule 7, 8, 9, 11 are relevant with lower confidence, and rule 15 is
irrelevant.

4.4 Assessment of the Reliability Using EPR Index

Since high-throughput experimental methods may produce false positives, it is
essential to assess the reliability of protein-protein interaction data obtained.
Deane et al. [8] proposed the expression profile reliability (EPR) index to as-
sess the reliability of measurement of protein interaction. The EPR index es-
timates the biologically relevant fraction of protein interactions detected in a
high throughput screen. For each given data, we retrieved all protein pairs that
classified as positive. Table 3 shows the EPR index calculated using the original
and our proposed method for a number of well-known protein-protein interac-
tion data. It can be seen that the EPR index of our method is higher than the
original one, demonstrating the validity of the proposed method.
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Rule 1 [Pos cover = 81 Neg cover = 0]
interact(A,B) : − pfam(B,C), pfam(A,C).

Rule 2 [Pos cover = 61 Neg cover = 0]
interact(A,B) : − go(B, C), go(A,C), is a(C,D).

Rule 3 [Pos cover = 51 Neg cover = 0]
interact(A,B) : − interpro(B,C), interpro(A,C), interpro2go(C,D).

Rule 4 [Pos cover = 15 Neg cover = 0]
interact(A,B) : − go(B, C), go(A,C),
hasft(A,domain coiled coil potential).

Rule 5 [Pos cover = 8 Neg cover = 0]
interact(A,B) : − go(B, C), go(A,C),
complex category(A,intracellular transport complexes).

Rule 6 [Pos cover = 6 Neg cover = 0]
interact(A,B) : − subcellular location(B, nucleus),
function category(A,cell cycle and dna processing),
phenotype category(B,cell morphology and organelle mutants).

Rule 7 [Pos cover = 6 Neg cover = 0]
interact(A,B) : − pfam(A,C), subcellular location(B, er),
haskw(B, autophagy).

Rule 8 [Pos cover = 5 Neg cover = 0]
interact(A,B) : − phenotype category(B,conditional phenotypes),
hasft(A,domain rna binding rrm).

Rule 9 [Pos cover = 5 Neg cover = 0]
interact(A,B) : − correlation(B, A, C), gteq(C, 0.241974),
hasft(A,domain rna binding rrm).

Rule 10 [Pos cover = 4 Neg cover = 0]
interact(A,B) : − pfam(A,C), haskw(B, direct protein sequencing),
hasft(B, domain histone fold).

Rule 11 [Pos cover = 4 Neg cover = 0]
interact(A,B) : − correlation(A, B, C), gteq(C, 0.236007),
hasft(A,domain poly gln).

Rule 12 [Pos cover = 4 Neg cover = 0]
interact(A,B) : − protein category(A,gtp − binding proteins),
correlation(A, B, C), gteq(C,0.144137).

Rule 13 [Pos cover = 4 Neg cover = 0]
interact(A,B) : − function category(B,cell fate),
hasft(B, transmem potential), hasft(A, transmem potential).

Rule 14 [Pos cover = 3 Neg cover = 0]
interact(A,B) : − subcellular location(B, integral membrane),
correlation(A, B, C), gteq(C,0.46332).

Rule 15 [Pos cover = 2 Neg cover = 0]
interact(A,B) : − correlation(B, A, C), gteq(C, 0.599716),
haskw(A, cell division).

Fig. 1. Some rules obtained with minpos = 2. For example, rule 14 means that protein
A will interact with protein B if protein B is located in the integral membrane of the
cell, and the expression correlation coefficient between protein A and protein B is
greater than 0.46332.
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Table 3. Evaluated the proposed method using EPR index. The number of interac-
tions after preprocessing means the number of interactions obtained after removing all
interactions in which either bait ORF or prey ORF it not found in SWISS-PROT.

Data Number of interactions EPR index
Original After preprocessing Proposed Original Proposed

Ito 4549 3174 1925 0.1910 ± 0.0306 0.2900 ± 0.0481

Uetz 1474 1109 738 0.4450 ± 0.0588 0.5290 ± 0.0860

Ito+Uetz 5827 4126 2567 0.2380 ± 0.0287 0.3170 ± 0.0431

MIPS 14146 10894 7080 0.5950 ± 0.0337 0.6870 ± 0.0420

DIP 15409 12152 8674 0.4180 ± 0.0260 0.5830 ± 0.0374

5 Conclusions and Future Work

We have presented an approach using ILP to predict protein-protein interactions.
The experimental results demonstrate that our proposed method can produce
comprehensible rules, and at the same time, showing a considerably high per-
formance compared with other work on protein-protein interaction prediction.
In future work, we would like to investigate further about the biological signif-
icance of novel protein-protein interactions obtained by our method, and apply
the ILP approach to other important tasks, such as predicting protein functions
and subcellular locations using protein-protein interaction data. We are also in-
vestigating to exploit the GO structures as background knowledge, rather than
using the occurence of a single GO term as in the current work.
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