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Abstract. Cost-sensitive decision tree and cost-sensitive naïve Bayes are both 
new cost-sensitive learning models proposed recently to minimize the total cost 
of test and misclassifications. Each of them has its advantages and 
disadvantages. In this paper, we propose a novel cost-sensitive learning model, 
a hybrid cost-sensitive decision tree, called DTNB, to reduce the minimum total 
cost, which integrates the advantages of cost-sensitive decision tree and of the 
cost-sensitive naïve Bayes together. We empirically evaluate it over various test 
strategies, and our experiments show that our DTNB outperforms cost-sensitive 
decision and the cost-sensitive naïve Bayes significantly in minimizing the total 
cost of tests and misclassification based on the same sequential test strategies, 
and single batch strategies. 

1   Introduction 

Inductive learning techniques have had great success in building classifiers and 
classifying test examples into classes with a high accuracy or low error rate. However, 
in many real-world applications, lowing misclassification error is not the goal as 
“errors” can cost very differently. This type of learning is called cost-sensitive 
learning. Turney [14] surveys a whole range of costs in cost-sensitive learning, among 
which two types of costs are most important: misclassification costs and test costs. 
For example, in a binary classification task, the cost of false positive (FP) and the cost 
of false negative (FN) are often very different. In addition, attributes (tests) may have 
different costs, and acquiring values of attributes also incurs costs. The goal of 
learning is to minimize the sum of the misclassification costs and the test costs.   

Tasks involving both misclassification and test costs are abundant in real-world 
applications. For example, when building a model for medical diagnosis from the 
training data, we must consider the cost of tests (such as blood tests, X-ray, etc.) and 
the cost of misclassifications (errors in the diagnosis). Further, when a doctor sees a 
new patient (a test example), tests are normally ordered, at a cost to the patient or 
his/her insurance company. To better diagnose or predict the disease of the patient 
(i.e., reducing the misclassification cost). Doctors must balance the trade-off between 
potential misclassification costs and test costs to determinate which tests should be 
ordered, and at what order, to reduce the expected total cost. A case study on heart 
disease is given in the paper.  

In this paper, we propose a new cost-sensitive learning model, DTNB, which 
integrates the advantages of the cost-sensitive decision tree and the cost-sensitive 
naïve Bayes, both of which minimize the total cost of misclassifications and tests. 
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DTNB uses the cost-sensitive decision tree to collect the required tests for test 
examples, and uses the cost-sensitive naïve Bayes to classify. For a test example, after 
the required tests are collected according to the cost-sensitive decision tree, the tests 
are performed with a cost and their results are available. Then the cost-sensitive naïve 
Bayes built on all the training data is applied to classify the test example. The naïve 
Bayes model can make use of the known values which do not appear in the path 
which the test example follows to go down to a leaf in the cost-sensitive decision tree. 
Thus, we can expect that the cost-sensitive DTNB can achieve lower total cost than 
the cost-sensitive decision tree and the cost-sensitive naïve Bayes do alone. 

The rest of paper is organized as follows. We first review the related work in 
Section 2. Then we describe our new cost-sensitive learning model, DTNB, to reduce 
the minimum total cost of tests and misclassifications in Section 3. In Section 4, we 
present empirical experiments. The paper concludes with discussion and some 
directions for the future work.  

2   Review of Previous Work 

Cost-sensitive learning has received extensive attentions in recent years. Turney [14] 
analyzes a variety of costs in machine learning, such as misclassification costs, test 
costs, active learning costs, computation cost, human-computer interaction cost, etc. 
Two types of costs are singled out as the most important in machine learning: 
misclassification costs and test costs, and test costs are normally considered in 
conjunction with misclassification costs. Much work has been done in considering 
non-uniform misclassification costs (alone), such as [4, 5, 7]. Those works can often 
used to solve problem of learning with very imbalanced datasets [3]. Some previous 
work, such as [10, 12], consider the test cost alone without incorporating 
misclassification cost. As pointed out by [14] it is obviously an oversight. As far as we 
know, the only work considering both misclassification and test costs includes [13, 
15, 9, 2]. We discuss these works in detail below. 

In [15], the cost-sensitive learning problem is cast as a Markov Decision Process 
(MDP), and an optimal solution is given as a search in a state space for optimal 
policies.  While related to our work, their research adopts an optimal search strategy, 
which may incur very high computational cost to conduct the search.  In contrast, we 
adopt the local search similar to [11] using a polynomial time algorithm to build a 
new decision trees, and our test strategies are also polynomial to the tree size. 
(Greiner et al. 2002) studied the theoretical aspects of active learning with test costs 
using a PAC learning framework, which models how to use a budget to collect the 
relevant information for the real-world applications with no actual data at beginning. 
Our algorithm builds a model from history data to minimize the total cost of 
misclassification and tests for a new case with missing values. Turney [13] presented 
a system called ICET, which uses a genetic algorithm to build a decision tree to 
minimize the cost of tests and misclassification.  Our algorithm essentially adopts the 
same decision-tree building framework as in [11], and it is expected to be more 
efficient than Turney’s genetic algorithm based approach. 

Ling et al. [9] propose a cost-sensitive decision tree learning program that 
minimizes the total cost of tests and misclassifications. They also propose several test 
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strategies, and compare their results to C4.5. However, for a test example, the cost-
sensitive decision tree ignores the information supplied by the known attributes which 
do not appear in the path which the test example follows to go down to a leaf in the 
cost-sensitive decision tree. Chai et al. [2] propose a cost-sensitive naïve Bayes based 
algorithm, called CSNB, which searches for minimal total cost of tests and 
misclassifications. They also propose a sequential test strategy and a single batch test 
strategy. However, the cost-sensitive naïve Bayes does not learn the general attribute 
structure (such as the tree structure) but only probability tables from training data. The 
test sequence for each test example is less comprehensible.  

Our model, DTNB, combines the advantages of cost-sensitive decision tree and 
naïve Bayes. It utilizes the structure of the cost-sensitive decision tree to collect the 
beneficiary tests for a test example and makes use of the information in the known 
attributes which are ignored by the cost-sensitive decision tree to reduce the 
misclassification cost. We expect that our DTNB outperform cost-sensitive decision 
tree and cost-sensitive naïve Bayes alone in terms of the total cost of tests and 
misclassification. 

The new cost-sensitive model, DTNB, is composed of decision tree and naïve 
Bayes, but it is much different from NBTree [8] proposed by Kohavi. First of all, 
NBTree is not a cost-sensitive learning model. The learning algorithm of NBTree is 
similar to C4.5 [Qui93]. DTNB is a cost-sensitive learning to minimize the total cost 
of tests and misclassification. Secondly, in NBTree, a naïve Bayes is constructed for 
each leaf using the data associated with the leaf. However, DTNB only constructs one 
naïve Bayes using all the training data. This naïve Bayes acts as a hidden node at each 
node (including the leaves) of the cost-sensitive decision tree. The details of 
difference between NBTree and DTNB are explained in Section 3.   

3   The New Cost-Sensitive Learning - DTNB 

We assume that we are given a set of training data (with possible missing attribute 
values), the misclassification costs, and test costs for each attribute. We propose a 
novel cost-sensitive learning model, DTNB, which combines the advantages of cost-
sensitive decision tree and naïve Bayes. The rationale of DTNB is based on our 
observations. We note that cost-sensitive decision tree has the ability of learning a 
general structure, and the structure of the tree plays an important role for collecting 
the most beneficiary unknown values. However, the decision tree ignores the original 
known values which do not appear in the tree for classify a test example. In non-cost-
sensitive learning, this is one reasonable feature of decision tree. But in cost-sensitive 
learning, any value is available with a certain cost. We do not want waste any 
available information. Naturally, making use of all known values can reduce the total 
cost. The information of the known attributes which do not appear in the path through 
which the test example goes down to a leaf of the tree is useful for cost-sensitive 
classification to reduce the misclassification cost. Fortunately, cost-sensitive naïve 
Bayes indeed utilizes all known attributes for misclassification, but it does not have a 
structure learning ability to help determine which tests and in what order should be 
done for unknown attributes.  
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Fig. 1. An example of cost-sensitive DTNB 

In order to overcome these drawbacks and combine those advantages in the two 
cost-sensitive models, we propose a novel cost-sensitive learning model, which 
integrates cost-sensitive decision tree with cost-sensitive naïve Bayes, called DTNB. 
Figure 1 shows the structure of an example of the novel cost-sensitive learning model 
DTNB. We can see DTNB is an integration model with two parts. The left part is a 
cost-sensitive decision tree which is used for finding the required tests for each testing 
example. Besides the cost-sensitive tree, DTNB also contains a naïve Bayes (right 
part), which is for classification. 

First of all, DTNB builds a cost-sensitive decision tree, given a set of training data, 
the misclassification costs, and test costs for each attribute. The building procedure is 
similar to C4.5. Instead of using entropy based splitting criteria, we use the expected 
total misclassification cost to select an attribute for splitting. This gives a more 
accurate choice for attribute selection. That is, an attribute may be selected as a root 
node of a decision tree if the sum of the test cost and the expected misclassification 
costs of all branches is the minimum among other attributes, and is less than that of 
the root. For a subset of examples with tp positive examples and tn negative 
examples, if CP = tp×TP + tn×FP is the total misclassification cost of being a positive 
leaf, and CN  =  tn× TN + tp×FN is the total misclassification cost of being a negative 
leaf, then the probability of being positive is estimated by the relative cost of CP and 
CN; the smaller the cost, the larger the probability (as minimum cost is sought). Thus, 
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2 . Thus, (E – EA –TC) is the expected cost reduction 

splitting on A, where TC is the total test cost for all examples on A. It is easy to find 
out which attribute has the smallest expected total cost (the sum of the test cost and 
the expected misclassification cost), and if it is smaller than the one without split (if 
so, it is worth to split). With the expected total misclassification cost described above 
as the splitting criterion, the lazy-tree learning algorithm is shown in Figure 2. 

Simultaneously, we build a cost sensitive naïve Bayes. Note that this model is built 
on all the training data, and for all nodes in the tree. However, NBTree [Koh96] treats 
the segmentation of decision tree as an advantage. It builds a naïve Bayes at each leaf 
of the decision tree. And the naïve Bayes constructed for a leaf uses only the data 
associated with the leaf. However, as the tree grows, the training data are split into the 
lower level nodes. Finally, there are very little data in the leaves. The classification 
based on these leaves is far less accurate, so that the misclassification cost goes 
higher. This is reason that NBTree is proposed for larger dataset. However, without 
larger dataset assumption DTNB overcomes the shortcoming of segmentation of 
decision tree by constructing only one naïve Bayes using all the training data. This 
naïve Bayes acts as a hidden model at each node (including the leaves) of the cost-
sensitive decision tree. The hidden model is only for classification. Thus, DTNB does 
not utilize the data which go down into a leaf of the tree to classify a testing example 
which drops into this leaf. It classifies the test example by the only hidden cost-
sensitive naïve Bayes.  

DTNB only builds one general naïve Bayes from all the training data. Whereas, the 
posterior probabilities of a test example e are computed from the known attributes and 
the tested unknown attributes. The unknown attributes which are not selected to 
perform testing are not concerned. With the posterior probabilities, if FN× P(+|e) > 
FP×P(-|e), this test example is classified as negative, otherwise, as positive. A 
misclassification cost may be incurred if the prediction of the test example is wrong. 
Thus, for each test example, not only the attributes appearing on the tree, but also the 
known attributes can be fully used to make correct classification, so that the total 
misclassification cost can be reduced, as any known value is worthy of a certain cost. 
But for the cost-sensitive decision tree, it is possible some known attributes are not 
used to split the training data, so that they become useless for the classification. 
DTNB makes use of all known attributes, as well as the available values of the 
collected unknown attributes at certain test costs. 

 
 



 Hybrid Cost-Sensitive Decision Tree 279 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Fig. 2. Algorithm of cost-sensitive decision tree 

In the naïve Bayes model of DTNB, the Laplace Correction is applied. That is, 
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=+  where Na is the number of instances whose attribute A1=a, N 

is the number of instances whose class is +, and m is the number of classes. 
After DTNB is built, for each testing example, there are two steps to find the 

minimum total cost of tests and misclassifications. The first step is to utilize the tree 
structure of the cost-sensitive decision tree to collect a set of tests which need be 
performed according to a certain strategy (there are several strategies explained in 
Section 4). The total test cost is accumulated in the step. After the set of tests are 
done, the values of the unknown attributes in the test example are available. It 
automatically goes to the second step, where the cost-sensitive naïve Bayes model is 
used to classify the test example into a certain class. The naïve Bayes uses not only 
the unknown attributes tested but also all known attributes. If it is classified 
incorrectly, there is misclassification cost. We empirically evaluate it over various test 
strategies in next section. 

4   Experiments 

We evaluate the performance of DTNB on two categories of test strategies: Sequential 
Test, and Single Batch Test. For a given test example with unknown attributes, the 

CSDT(Examples, Attributes, TestCosts) 
1. Create a root node for the tree 
2. If all examples are positive, return the single-node tree, with label = + 
3. If all examples are negative, return the single-node tree, with label = - 
4. If attributes is empty, return the single-node tree, with label assigned 

according to min (EP, EN) 
5. Otherwise Begin 

a. If maximum cost reduction < 0 return the single-node tree, with label 
assigned according to min (EP, EN) 

b. A is an attribute which produces maximum cost reduction among all the 
remaining attributes 

c. Assign the attribute A as the tree root 
d. For each possible value vi of the attribute A 

i. Add a new branch below root, corresponding to the test A=vi 
ii. Segment the training examples into each branch Example_vi 
iii. If no examples in a branch, add a leaf node in this branch, with label 

assigned according to min (EP, EN) 
iv. Else add a subtree below this branch, CSDT(examples_vi, 

Attributes-A, TestCosts) 
6. End  
7. Return root 
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Sequential Test can request only one test at a time, and wait for the test result to 
decide which attribute to be tested next, or if a final prediction is made.  The Single 
Batch Test, on the other hand, can request one set (batch) of one or many tests to be 
done simultaneously before a final prediction is made.   

4.1   DTNB’s Optimal Sequential Test  

Recall that Sequential Test allows one test to be performed (at a cost) each time 
before the next test is determined, until a final prediction is made. Ling, et al. [9] 
described a simple strategy called Optimal Sequential Test (or OST in short) that 
directly utilizes the decision tree built to guide the sequence of tests to be performed 
in the following way: when the test example is classified by the tree, and is stopped 
by an attribute whose value is unknown, a test of that attribute is made at a cost. This 
process continues until the test case reaches a leaf of the tree. According to the leaf 
reached, a prediction is made, which may incur a misclassification cost if the 
prediction is wrong. Clearly the time complexity of OST is only linear to the depth of 
the tree. 

One weakness with this approach is that it ignores some known attributes which do 
not appear in the path through which a test example goes down to a leaf. However, 
these attributes can be useful for reducing the misclassification cost. Like the OST, 
We also propose an Optimal Sequential Test strategy for DTNB (section 3), called 
DNOST in short. It has the similar process as OST. The only difference is that the 
class prediction which is not made by the leaf it reached, but the naïve Bayesian 
classification model in DTNB. This strategy utilizes the tree structure to collect the 
most useful tests for a test example. And it also utilizes the entire original known 
attributes in the test example with the unknown attributes tested to predict the class of 
the test example. We can expect DNOST outperforms OST. 

Table 1. Datasets used in the experiments 

 
No. of 

Attributes 
No. of 

Examples 
Class dist. (N/P) 

Ecoli 6 332 230/102 

Breast 9 683 444/239 
Heart 8 161 98/163 

Thyroid 24 2000 1762/238 
Australia 15 653 296/357 

Tic-tac-toe 9 958 332/626 
Mushroom 21 8124 4208/3916 
Kr-vs-kp 36 3196 1527/1669 
Voting 16 232 108/124 
Cars 6 446 328/118 
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Comparing Sequential Test Strategies. To compare various sequential test 
strategies, we choose 10 real-world datasets which are listed in Table 1, from the UCI 
Machine Learning Repository [1]. The datasets are first discretized using the minimal 
entropy method [6]. These datasets are chosen because they are binary class, have at 
least some discrete attributes, and have a good number of examples. Each dataset is 
split into two parts: the training set (60%) and the test set (40%). Unlike the case 
study of heart disease, the detailed test costs and group information [13] of these 
datasets are unknown. To make the comparison possible, we simply choose randomly 
the test costs of all attributes to be some values between 0 and 100. This is reasonable 
because we compare the relative performance of all test strategies under the same 
chosen costs. To make the comparisons straightforward, we set up the same 
misclassification costs 200/600 (200 for false positive and 600 for false negative). For 
test examples, a certain ratio of attributes (0.2, 0.4, 0.6, 0.8, and 1) are randomly 
selected and marked as unknown to simulate test cases with various degrees of 
missing values.  

In this section, we compare our DNOST with the other two sequential test 
strategies available, OST, and CSNB [2] on 10 real-world datasets to see which one is 
better (having a smaller total cost). Note that DNOST and OST use the same decision 
tree to collect beneficiary tests. However, DNOST uses DTNB’s naïve Bayes for 
classification, while OST uses the leaves of tree to classify test examples. CSNB 
follows the same test strategy: determine next test based on the previous test result. 
However, it is based on the naïve Bayes only. In all, all of them are based on the same 
test strategy, but they are applied different cost-sensitive learning models. That is, 
their performances directly stand for the performances of different learning models. 
We repeat this process 25 times, and the average total costs for the 10 datasets are 
plotted in Figure 3. 
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Fig. 3. The total cost of our new Sequential Test Strategy DNOST compared to previous 
strategies (OST and CSNB) 
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We can make several interesting conclusions. First, DNOST performs the best 
among the three sequential test strategies. When the unknown attribute ratio is higher, 
the difference between DNOST and CSNB becomes bigger. However, DNOST is 
gradually close to OST when the unknown ratio is increased. When the unknown ratio 
is lower, the difference between DNOST and OST is bigger, as more known attributes 
are utilized in DTNB, but they are ignored in cost-sensitive decision tree. Second, the 
results proof our expectation which DTNB integrates the advantage of the decision 
tree and the naïve Bayes and overcomes their defects. When the unknown ratio is 
lower, there are more known attributes ignored by OST, so that OST performs worse, 
whereas DNOST and CSNB perform better and are closer, as they make use of the 
known values. When the unknown ratio is higher, there are less known attributes 
ignored by OST and both DNOST and OST utilize the tree structure to collect the 
most beneficiary tests, so that they perform better and are close to each other.  

4.2   Single Batch Test Strategies 

The Sequential Test Strategies have to wait for the result of each test to determine 
which test will be the next one. Waiting not only costs much time, but also increases 
the pressure and affects the life quality of patients in medical diagnosis. In 
manufacturing diagnoses, it delays the progress of engineering. Even in some 
particular situations, for example, emergence, we have to make decisions as soon as 
possible.  In medical emergence, doctors normally order one set of tests (at a cost) to 
be done at once. This is the case of the Single Batch Test. 

In [9] a very simple heuristic is described. The basic idea is that when a test 
example is classified by a minimum-cost tree and is stopped by the first attribute 
whose value is unknown in the test case, all unknown attributes under and including 
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Fig. 4. The total cost of our new Single Batch Test Strategies DN-NSB compared to their 
previous strategies (NSB and CSNB-SB) 
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this first attribute would be tested, as a single batch. Clearly, this strategy would have 
exactly the same misclassification cost as the Optimal Sequential Test, but the total 
test cost is higher as extra tests are performed. This strategy is called Naïve Single 
Batch (NSB).  

The weakness of NSB is that it ignores some known attributes which do not appear 
in the path through which a test example goes down to a leaf after the tests are 
performed. However, these attributes can be useful for reducing the misclassification 
cost. Like the NSB, we apply the similar process on DTNB. The only difference is the 
class prediction which is not made by the leaf a test example reached after the tests 
are performed, but by the naïve Bayes classification model. We call this process 
DTNB’s Naïve Single Batch Test (or DN-NSB in short).  

Comparing Single Batch Test Strategies. We use the same experiment procedure on 
the same 10 datasets used in Section 4.1 (see Table 1) to compare various Single 
Batch Test strategies including CSNB-SB [2]. The only change is the 
misclassification costs, which are set to 2000/6000 (2000 for false positive and 6000 
for false negative). The misclassification costs are set to be larger so the trees will be 
larger and the batch effect is more evident. Note that DN-NSB and NSB use the same 
decision tree to collect beneficiary tests. However, DN-NSB uses DTNB’s naïve 
Bayes for classification, while NSB uses the leaves of tree to classify test examples. 
CSNB follows the same test strategy: request one set (batch) of one or many tests to 
be done simultaneously before a final prediction is made. However, it is based on the 
naïve Bayes only. In all, all of them are based on the same test strategy, but they are 
applied to different cost-sensitive learning models. That is, their performances 
directly stand for the performances of different learning models. The total costs for 
the 10 datasets are compared and plotted in Figure 4.  

We can make several interesting conclusions. First, the single batch test strategy 
(DN-NSB) based on DTNB outperforms others on any unknown ratio. CSNB-SB 
outperforms NSB when the unknown ratio is higher, but it is worse than NSB when 
the unknown ratio goes down. Second, the results again proof our expectation which 
DTNB integrates the advantage of the decision tree and the naïve Bayes and 
overcomes their defects. When the unknown ratio is lower, there are more known 
attributes ignored by NSB, so that NSB performs worse. DN-NSB and CSNB-SB 
perform better, as they make use of the known values. When the unknown ratio is 
higher, there are less known attributes ignored by NSB and both DN-NSB and NSB 
utilize the tree structure to collect the most beneficiary tests, so that they perform 
better.   

5   Conclusion and Future Work 

In this paper, we present a hybrid decision tree learning algorithm, which integrate 
with naïve Bayes, to minimize the total cost of misclassifications and tests. We 
evaluate the performance (in terms of the total cost) empirically, compared to 
previous methods using decision tree and naïve Bayes alone. The results show that 
our novel learning algorithm, DTNB, performs significantly better than the decision 
tree learning and the naïve Bayes learning alone.  
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 In our future work we plan to design smart single batch test strategies. We also 
plan to incorporate other types of costs in our hybrid decision tree learning DTNB and 
test strategies. 
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