
A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 274 – 284, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Hybrid Cost-Sensitive Decision Tree

Shengli Sheng and Charles X. Ling

Department of Computer Science, The University of Western Ontario,
London, Ontario N6A 5B7, Canada

{cling, ssheng}@ csd.uwo.ca

Abstract. Cost-sensitive decision tree and cost-sensitive naïve Bayes are both
new cost-sensitive learning models proposed recently to minimize the total cost
of test and misclassifications. Each of them has its advantages and
disadvantages. In this paper, we propose a novel cost-sensitive learning model,
a hybrid cost-sensitive decision tree, called DTNB, to reduce the minimum total
cost, which integrates the advantages of cost-sensitive decision tree and of the
cost-sensitive naïve Bayes together. We empirically evaluate it over various test
strategies, and our experiments show that our DTNB outperforms cost-sensitive
decision and the cost-sensitive naïve Bayes significantly in minimizing the total
cost of tests and misclassification based on the same sequential test strategies,
and single batch strategies.

1 Introduction

Inductive learning techniques have had great success in building classifiers and
classifying test examples into classes with a high accuracy or low error rate. However,
in many real-world applications, lowing misclassification error is not the goal as
“errors” can cost very differently. This type of learning is called cost-sensitive
learning. Turney [14] surveys a whole range of costs in cost-sensitive learning, among
which two types of costs are most important: misclassification costs and test costs.
For example, in a binary classification task, the cost of false positive (FP) and the cost
of false negative (FN) are often very different. In addition, attributes (tests) may have
different costs, and acquiring values of attributes also incurs costs. The goal of
learning is to minimize the sum of the misclassification costs and the test costs.

Tasks involving both misclassification and test costs are abundant in real-world
applications. For example, when building a model for medical diagnosis from the
training data, we must consider the cost of tests (such as blood tests, X-ray, etc.) and
the cost of misclassifications (errors in the diagnosis). Further, when a doctor sees a
new patient (a test example), tests are normally ordered, at a cost to the patient or
his/her insurance company. To better diagnose or predict the disease of the patient
(i.e., reducing the misclassification cost). Doctors must balance the trade-off between
potential misclassification costs and test costs to determinate which tests should be
ordered, and at what order, to reduce the expected total cost. A case study on heart
disease is given in the paper.

In this paper, we propose a new cost-sensitive learning model, DTNB, which
integrates the advantages of the cost-sensitive decision tree and the cost-sensitive
naïve Bayes, both of which minimize the total cost of misclassifications and tests.

 Hybrid Cost-Sensitive Decision Tree 275

DTNB uses the cost-sensitive decision tree to collect the required tests for test
examples, and uses the cost-sensitive naïve Bayes to classify. For a test example, after
the required tests are collected according to the cost-sensitive decision tree, the tests
are performed with a cost and their results are available. Then the cost-sensitive naïve
Bayes built on all the training data is applied to classify the test example. The naïve
Bayes model can make use of the known values which do not appear in the path
which the test example follows to go down to a leaf in the cost-sensitive decision tree.
Thus, we can expect that the cost-sensitive DTNB can achieve lower total cost than
the cost-sensitive decision tree and the cost-sensitive naïve Bayes do alone.

The rest of paper is organized as follows. We first review the related work in
Section 2. Then we describe our new cost-sensitive learning model, DTNB, to reduce
the minimum total cost of tests and misclassifications in Section 3. In Section 4, we
present empirical experiments. The paper concludes with discussion and some
directions for the future work.

2 Review of Previous Work

Cost-sensitive learning has received extensive attentions in recent years. Turney [14]
analyzes a variety of costs in machine learning, such as misclassification costs, test
costs, active learning costs, computation cost, human-computer interaction cost, etc.
Two types of costs are singled out as the most important in machine learning:
misclassification costs and test costs, and test costs are normally considered in
conjunction with misclassification costs. Much work has been done in considering
non-uniform misclassification costs (alone), such as [4, 5, 7]. Those works can often
used to solve problem of learning with very imbalanced datasets [3]. Some previous
work, such as [10, 12], consider the test cost alone without incorporating
misclassification cost. As pointed out by [14] it is obviously an oversight. As far as we
know, the only work considering both misclassification and test costs includes [13,
15, 9, 2]. We discuss these works in detail below.

In [15], the cost-sensitive learning problem is cast as a Markov Decision Process
(MDP), and an optimal solution is given as a search in a state space for optimal
policies. While related to our work, their research adopts an optimal search strategy,
which may incur very high computational cost to conduct the search. In contrast, we
adopt the local search similar to [11] using a polynomial time algorithm to build a
new decision trees, and our test strategies are also polynomial to the tree size.
(Greiner et al. 2002) studied the theoretical aspects of active learning with test costs
using a PAC learning framework, which models how to use a budget to collect the
relevant information for the real-world applications with no actual data at beginning.
Our algorithm builds a model from history data to minimize the total cost of
misclassification and tests for a new case with missing values. Turney [13] presented
a system called ICET, which uses a genetic algorithm to build a decision tree to
minimize the cost of tests and misclassification. Our algorithm essentially adopts the
same decision-tree building framework as in [11], and it is expected to be more
efficient than Turney’s genetic algorithm based approach.

Ling et al. [9] propose a cost-sensitive decision tree learning program that
minimizes the total cost of tests and misclassifications. They also propose several test

276 S. Sheng and C.X. Ling

strategies, and compare their results to C4.5. However, for a test example, the cost-
sensitive decision tree ignores the information supplied by the known attributes which
do not appear in the path which the test example follows to go down to a leaf in the
cost-sensitive decision tree. Chai et al. [2] propose a cost-sensitive naïve Bayes based
algorithm, called CSNB, which searches for minimal total cost of tests and
misclassifications. They also propose a sequential test strategy and a single batch test
strategy. However, the cost-sensitive naïve Bayes does not learn the general attribute
structure (such as the tree structure) but only probability tables from training data. The
test sequence for each test example is less comprehensible.

Our model, DTNB, combines the advantages of cost-sensitive decision tree and
naïve Bayes. It utilizes the structure of the cost-sensitive decision tree to collect the
beneficiary tests for a test example and makes use of the information in the known
attributes which are ignored by the cost-sensitive decision tree to reduce the
misclassification cost. We expect that our DTNB outperform cost-sensitive decision
tree and cost-sensitive naïve Bayes alone in terms of the total cost of tests and
misclassification.

The new cost-sensitive model, DTNB, is composed of decision tree and naïve
Bayes, but it is much different from NBTree [8] proposed by Kohavi. First of all,
NBTree is not a cost-sensitive learning model. The learning algorithm of NBTree is
similar to C4.5 [Qui93]. DTNB is a cost-sensitive learning to minimize the total cost
of tests and misclassification. Secondly, in NBTree, a naïve Bayes is constructed for
each leaf using the data associated with the leaf. However, DTNB only constructs one
naïve Bayes using all the training data. This naïve Bayes acts as a hidden node at each
node (including the leaves) of the cost-sensitive decision tree. The details of
difference between NBTree and DTNB are explained in Section 3.

3 The New Cost-Sensitive Learning - DTNB

We assume that we are given a set of training data (with possible missing attribute
values), the misclassification costs, and test costs for each attribute. We propose a
novel cost-sensitive learning model, DTNB, which combines the advantages of cost-
sensitive decision tree and naïve Bayes. The rationale of DTNB is based on our
observations. We note that cost-sensitive decision tree has the ability of learning a
general structure, and the structure of the tree plays an important role for collecting
the most beneficiary unknown values. However, the decision tree ignores the original
known values which do not appear in the tree for classify a test example. In non-cost-
sensitive learning, this is one reasonable feature of decision tree. But in cost-sensitive
learning, any value is available with a certain cost. We do not want waste any
available information. Naturally, making use of all known values can reduce the total
cost. The information of the known attributes which do not appear in the path through
which the test example goes down to a leaf of the tree is useful for cost-sensitive
classification to reduce the misclassification cost. Fortunately, cost-sensitive naïve
Bayes indeed utilizes all known attributes for misclassification, but it does not have a
structure learning ability to help determine which tests and in what order should be
done for unknown attributes.

 Hybrid Cost-Sensitive Decision Tree 277

A6
230:102

1 4
2 3 C

P
107:0

P
108:0

N
11:100 +A1

4:2

…62 4 5 A2A1 A6
N
0:1

N
0:1

P
2:0

P
2:0

Fig. 1. An example of cost-sensitive DTNB

In order to overcome these drawbacks and combine those advantages in the two
cost-sensitive models, we propose a novel cost-sensitive learning model, which
integrates cost-sensitive decision tree with cost-sensitive naïve Bayes, called DTNB.
Figure 1 shows the structure of an example of the novel cost-sensitive learning model
DTNB. We can see DTNB is an integration model with two parts. The left part is a
cost-sensitive decision tree which is used for finding the required tests for each testing
example. Besides the cost-sensitive tree, DTNB also contains a naïve Bayes (right
part), which is for classification.

First of all, DTNB builds a cost-sensitive decision tree, given a set of training data,
the misclassification costs, and test costs for each attribute. The building procedure is
similar to C4.5. Instead of using entropy based splitting criteria, we use the expected
total misclassification cost to select an attribute for splitting. This gives a more
accurate choice for attribute selection. That is, an attribute may be selected as a root
node of a decision tree if the sum of the test cost and the expected misclassification
costs of all branches is the minimum among other attributes, and is less than that of
the root. For a subset of examples with tp positive examples and tn negative
examples, if CP = tp×TP + tn×FP is the total misclassification cost of being a positive
leaf, and CN = tn× TN + tp×FN is the total misclassification cost of being a negative
leaf, then the probability of being positive is estimated by the relative cost of CP and
CN; the smaller the cost, the larger the probability (as minimum cost is sought). Thus,

the probability of being positive is:
NP

N

NP

P

CC

C

CC

C

+
=

+
−1 . The expected

misclassification cost of being positive is: P
NP

N
P C

CC

C
E ×

+
= . Similarly, the

probability of being a negative leaf is
NP

P

CC

C

+
; and the expected misclassification

278 S. Sheng and C.X. Ling

cost of being negative is: N
NP

P
N C

CC

C
E ×

+
= . Therefore, without splitting, the

expected total misclassification cost of a given set of examples

is:
NP

NP
NP CC

CC
EEE

+
××=+= 2

. If an attribute A has l branches, then the

expected total misclassification cost after splitting on A is:

ii

ii

NP

NP
l

i
A CC

CC
E

+
×

×= ∑
=1

2 . Thus, (E – EA –TC) is the expected cost reduction

splitting on A, where TC is the total test cost for all examples on A. It is easy to find
out which attribute has the smallest expected total cost (the sum of the test cost and
the expected misclassification cost), and if it is smaller than the one without split (if
so, it is worth to split). With the expected total misclassification cost described above
as the splitting criterion, the lazy-tree learning algorithm is shown in Figure 2.

Simultaneously, we build a cost sensitive naïve Bayes. Note that this model is built
on all the training data, and for all nodes in the tree. However, NBTree [Koh96] treats
the segmentation of decision tree as an advantage. It builds a naïve Bayes at each leaf
of the decision tree. And the naïve Bayes constructed for a leaf uses only the data
associated with the leaf. However, as the tree grows, the training data are split into the
lower level nodes. Finally, there are very little data in the leaves. The classification
based on these leaves is far less accurate, so that the misclassification cost goes
higher. This is reason that NBTree is proposed for larger dataset. However, without
larger dataset assumption DTNB overcomes the shortcoming of segmentation of
decision tree by constructing only one naïve Bayes using all the training data. This
naïve Bayes acts as a hidden model at each node (including the leaves) of the cost-
sensitive decision tree. The hidden model is only for classification. Thus, DTNB does
not utilize the data which go down into a leaf of the tree to classify a testing example
which drops into this leaf. It classifies the test example by the only hidden cost-
sensitive naïve Bayes.

DTNB only builds one general naïve Bayes from all the training data. Whereas, the
posterior probabilities of a test example e are computed from the known attributes and
the tested unknown attributes. The unknown attributes which are not selected to
perform testing are not concerned. With the posterior probabilities, if FN× P(+|e) >
FP×P(-|e), this test example is classified as negative, otherwise, as positive. A
misclassification cost may be incurred if the prediction of the test example is wrong.
Thus, for each test example, not only the attributes appearing on the tree, but also the
known attributes can be fully used to make correct classification, so that the total
misclassification cost can be reduced, as any known value is worthy of a certain cost.
But for the cost-sensitive decision tree, it is possible some known attributes are not
used to split the training data, so that they become useless for the classification.
DTNB makes use of all known attributes, as well as the available values of the
collected unknown attributes at certain test costs.

 Hybrid Cost-Sensitive Decision Tree 279

Fig. 2. Algorithm of cost-sensitive decision tree

In the naïve Bayes model of DTNB, the Laplace Correction is applied. That is,

,
1

)|(
mN

N
ap a

+
+

=+ where Na is the number of instances whose attribute A1=a, N

is the number of instances whose class is +, and m is the number of classes.
After DTNB is built, for each testing example, there are two steps to find the

minimum total cost of tests and misclassifications. The first step is to utilize the tree
structure of the cost-sensitive decision tree to collect a set of tests which need be
performed according to a certain strategy (there are several strategies explained in
Section 4). The total test cost is accumulated in the step. After the set of tests are
done, the values of the unknown attributes in the test example are available. It
automatically goes to the second step, where the cost-sensitive naïve Bayes model is
used to classify the test example into a certain class. The naïve Bayes uses not only
the unknown attributes tested but also all known attributes. If it is classified
incorrectly, there is misclassification cost. We empirically evaluate it over various test
strategies in next section.

4 Experiments

We evaluate the performance of DTNB on two categories of test strategies: Sequential
Test, and Single Batch Test. For a given test example with unknown attributes, the

CSDT(Examples, Attributes, TestCosts)
1. Create a root node for the tree
2. If all examples are positive, return the single-node tree, with label = +
3. If all examples are negative, return the single-node tree, with label = -
4. If attributes is empty, return the single-node tree, with label assigned

according to min (EP, EN)
5. Otherwise Begin

a. If maximum cost reduction < 0 return the single-node tree, with label
assigned according to min (EP, EN)

b. A is an attribute which produces maximum cost reduction among all the
remaining attributes

c. Assign the attribute A as the tree root
d. For each possible value vi of the attribute A

i. Add a new branch below root, corresponding to the test A=vi
ii. Segment the training examples into each branch Example_vi
iii. If no examples in a branch, add a leaf node in this branch, with label

assigned according to min (EP, EN)
iv. Else add a subtree below this branch, CSDT(examples_vi,

Attributes-A, TestCosts)
6. End
7. Return root

280 S. Sheng and C.X. Ling

Sequential Test can request only one test at a time, and wait for the test result to
decide which attribute to be tested next, or if a final prediction is made. The Single
Batch Test, on the other hand, can request one set (batch) of one or many tests to be
done simultaneously before a final prediction is made.

4.1 DTNB’s Optimal Sequential Test

Recall that Sequential Test allows one test to be performed (at a cost) each time
before the next test is determined, until a final prediction is made. Ling, et al. [9]
described a simple strategy called Optimal Sequential Test (or OST in short) that
directly utilizes the decision tree built to guide the sequence of tests to be performed
in the following way: when the test example is classified by the tree, and is stopped
by an attribute whose value is unknown, a test of that attribute is made at a cost. This
process continues until the test case reaches a leaf of the tree. According to the leaf
reached, a prediction is made, which may incur a misclassification cost if the
prediction is wrong. Clearly the time complexity of OST is only linear to the depth of
the tree.

One weakness with this approach is that it ignores some known attributes which do
not appear in the path through which a test example goes down to a leaf. However,
these attributes can be useful for reducing the misclassification cost. Like the OST,
We also propose an Optimal Sequential Test strategy for DTNB (section 3), called
DNOST in short. It has the similar process as OST. The only difference is that the
class prediction which is not made by the leaf it reached, but the naïve Bayesian
classification model in DTNB. This strategy utilizes the tree structure to collect the
most useful tests for a test example. And it also utilizes the entire original known
attributes in the test example with the unknown attributes tested to predict the class of
the test example. We can expect DNOST outperforms OST.

Table 1. Datasets used in the experiments

No. of

Attributes
No. of

Examples
Class dist. (N/P)

Ecoli 6 332 230/102

Breast 9 683 444/239
Heart 8 161 98/163

Thyroid 24 2000 1762/238
Australia 15 653 296/357

Tic-tac-toe 9 958 332/626
Mushroom 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118

 Hybrid Cost-Sensitive Decision Tree 281

Comparing Sequential Test Strategies. To compare various sequential test
strategies, we choose 10 real-world datasets which are listed in Table 1, from the UCI
Machine Learning Repository [1]. The datasets are first discretized using the minimal
entropy method [6]. These datasets are chosen because they are binary class, have at
least some discrete attributes, and have a good number of examples. Each dataset is
split into two parts: the training set (60%) and the test set (40%). Unlike the case
study of heart disease, the detailed test costs and group information [13] of these
datasets are unknown. To make the comparison possible, we simply choose randomly
the test costs of all attributes to be some values between 0 and 100. This is reasonable
because we compare the relative performance of all test strategies under the same
chosen costs. To make the comparisons straightforward, we set up the same
misclassification costs 200/600 (200 for false positive and 600 for false negative). For
test examples, a certain ratio of attributes (0.2, 0.4, 0.6, 0.8, and 1) are randomly
selected and marked as unknown to simulate test cases with various degrees of
missing values.

In this section, we compare our DNOST with the other two sequential test
strategies available, OST, and CSNB [2] on 10 real-world datasets to see which one is
better (having a smaller total cost). Note that DNOST and OST use the same decision
tree to collect beneficiary tests. However, DNOST uses DTNB’s naïve Bayes for
classification, while OST uses the leaves of tree to classify test examples. CSNB
follows the same test strategy: determine next test based on the previous test result.
However, it is based on the naïve Bayes only. In all, all of them are based on the same
test strategy, but they are applied different cost-sensitive learning models. That is,
their performances directly stand for the performances of different learning models.
We repeat this process 25 times, and the average total costs for the 10 datasets are
plotted in Figure 3.

40

45

50

55

60

65

70

75

80

85

90

95

100

105

0.2 0.4 0.6 0.8 1

Ratio of Unknown Attributes

T
o
ta

l
C
o
st

DNOST CSNB OST

Fig. 3. The total cost of our new Sequential Test Strategy DNOST compared to previous
strategies (OST and CSNB)

282 S. Sheng and C.X. Ling

We can make several interesting conclusions. First, DNOST performs the best
among the three sequential test strategies. When the unknown attribute ratio is higher,
the difference between DNOST and CSNB becomes bigger. However, DNOST is
gradually close to OST when the unknown ratio is increased. When the unknown ratio
is lower, the difference between DNOST and OST is bigger, as more known attributes
are utilized in DTNB, but they are ignored in cost-sensitive decision tree. Second, the
results proof our expectation which DTNB integrates the advantage of the decision
tree and the naïve Bayes and overcomes their defects. When the unknown ratio is
lower, there are more known attributes ignored by OST, so that OST performs worse,
whereas DNOST and CSNB perform better and are closer, as they make use of the
known values. When the unknown ratio is higher, there are less known attributes
ignored by OST and both DNOST and OST utilize the tree structure to collect the
most beneficiary tests, so that they perform better and are close to each other.

4.2 Single Batch Test Strategies

The Sequential Test Strategies have to wait for the result of each test to determine
which test will be the next one. Waiting not only costs much time, but also increases
the pressure and affects the life quality of patients in medical diagnosis. In
manufacturing diagnoses, it delays the progress of engineering. Even in some
particular situations, for example, emergence, we have to make decisions as soon as
possible. In medical emergence, doctors normally order one set of tests (at a cost) to
be done at once. This is the case of the Single Batch Test.

In [9] a very simple heuristic is described. The basic idea is that when a test
example is classified by a minimum-cost tree and is stopped by the first attribute
whose value is unknown in the test case, all unknown attributes under and including

350

400

450

500

550

600

650

700

750

0.2 0.4 0.6 0.8 1
Ratio of Unknwon Attributes

T
o

ta
l C

o
st

CSNB-SB NSB DN-NSB

Fig. 4. The total cost of our new Single Batch Test Strategies DN-NSB compared to their
previous strategies (NSB and CSNB-SB)

 Hybrid Cost-Sensitive Decision Tree 283

this first attribute would be tested, as a single batch. Clearly, this strategy would have
exactly the same misclassification cost as the Optimal Sequential Test, but the total
test cost is higher as extra tests are performed. This strategy is called Naïve Single
Batch (NSB).

The weakness of NSB is that it ignores some known attributes which do not appear
in the path through which a test example goes down to a leaf after the tests are
performed. However, these attributes can be useful for reducing the misclassification
cost. Like the NSB, we apply the similar process on DTNB. The only difference is the
class prediction which is not made by the leaf a test example reached after the tests
are performed, but by the naïve Bayes classification model. We call this process
DTNB’s Naïve Single Batch Test (or DN-NSB in short).

Comparing Single Batch Test Strategies. We use the same experiment procedure on
the same 10 datasets used in Section 4.1 (see Table 1) to compare various Single
Batch Test strategies including CSNB-SB [2]. The only change is the
misclassification costs, which are set to 2000/6000 (2000 for false positive and 6000
for false negative). The misclassification costs are set to be larger so the trees will be
larger and the batch effect is more evident. Note that DN-NSB and NSB use the same
decision tree to collect beneficiary tests. However, DN-NSB uses DTNB’s naïve
Bayes for classification, while NSB uses the leaves of tree to classify test examples.
CSNB follows the same test strategy: request one set (batch) of one or many tests to
be done simultaneously before a final prediction is made. However, it is based on the
naïve Bayes only. In all, all of them are based on the same test strategy, but they are
applied to different cost-sensitive learning models. That is, their performances
directly stand for the performances of different learning models. The total costs for
the 10 datasets are compared and plotted in Figure 4.

We can make several interesting conclusions. First, the single batch test strategy
(DN-NSB) based on DTNB outperforms others on any unknown ratio. CSNB-SB
outperforms NSB when the unknown ratio is higher, but it is worse than NSB when
the unknown ratio goes down. Second, the results again proof our expectation which
DTNB integrates the advantage of the decision tree and the naïve Bayes and
overcomes their defects. When the unknown ratio is lower, there are more known
attributes ignored by NSB, so that NSB performs worse. DN-NSB and CSNB-SB
perform better, as they make use of the known values. When the unknown ratio is
higher, there are less known attributes ignored by NSB and both DN-NSB and NSB
utilize the tree structure to collect the most beneficiary tests, so that they perform
better.

5 Conclusion and Future Work

In this paper, we present a hybrid decision tree learning algorithm, which integrate
with naïve Bayes, to minimize the total cost of misclassifications and tests. We
evaluate the performance (in terms of the total cost) empirically, compared to
previous methods using decision tree and naïve Bayes alone. The results show that
our novel learning algorithm, DTNB, performs significantly better than the decision
tree learning and the naïve Bayes learning alone.

284 S. Sheng and C.X. Ling

 In our future work we plan to design smart single batch test strategies. We also
plan to incorporate other types of costs in our hybrid decision tree learning DTNB and
test strategies.

References

1. Blake, C.L., and Merz, C.J., UCI Repository of machine learning databases (website).
Irvine, CA: University of California, Department of Information and Computer Science
(1998).

2. Chai, X., Deng, L., Yang, Q., and Ling,C.X., Test-Cost Sensitive Naïve Bayesian
Classification. In Proceedings of the Fourth IEEE International Conference on Data
Mining. Brighton, UK : IEEE Computer Society Press (2004).

3. Chawla,N.V., Japkowicz, N., and Kolcz, A. eds., Special Issue on Learning from
Imbalanced Datasets. SIGKDD, 6(1): ACM Press (2004).

4. Domingos, P., MetaCost: A General Method for Making Classifiers Cost-Sensitive. In
Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining, 155-164. San Diego, CA: ACM Press (1999).

5. Elkan, C., The Foundations of Cost-Sensitive Learning. In Proceedings of the Seventeenth
International Joint Conference of Artificial Intelligence, 973-978. Seattle, Washington:
Morgan Kaufmann (2001).

6. Fayyad, U.M., and Irani, K.B., Multi-interval discretization of continuous-valued attributes
for classification learning. In Proceedings of the 13th International Joint Conference on
Artificial Intelligence, 1022-1027. France: Morgan Kaufmann (1993).

7. Ting, K.M., Inducing Cost-Sensitive Trees via Instance Weighting. In Proceedings of the
Second European Symposium on Principles of Data Mining and Knowledge Discovery,
23-26. Springer-Verlag (1998).

8. Kohavi, R., Scaling up the accuracy of Naïve-Bayes Classifier: a Decision-Tree Hybrid. In
Proceeding of the Second International Conference on Knowledge Discovery and Data
Mining (KDD96). AAAI Press (1996) 202-207.

9. Ling, C.X., Yang, Q., Wang, J., and Zhang, S., Decision Trees with Minimal Costs. In
Proceedings of the Twenty-First International Conference on Machine Learning, Banff,
Alberta: Morgan Kaufmann (2004).

10. Nunez, M., The use of background knowledge in decision tree induction. Machine
learning, 6:231-250 (1991).

11. Quinlan, J.R. eds., C4.5: Programs for Machine Learning. Morgan Kaufmann (1993).
12. Tan, M., Cost-sensitive learning of classification knowledge and its applications in

robotics. Machine Learning Journal, 13:7-33 (1993).
13. Turney, P.D., Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic

Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research 2:369-409
(1995).

14. Turney, P.D., Types of cost in inductive concept learning. In Proceedings of the Workshop
on Cost-Sensitive Learning at the Seventeenth International Conference on Machine
Learning, Stanford University, California (2000).

15. Zubek, V.B., and Dietterich, T., Pruning improves heuristic search for cost-sensitive
learning. In Proceedings of the Nineteenth International Conference of Machine Learning,
27-35, Sydney, Australia: Morgan Kaufmann (2002).

	Introduction
	Review of Previous Work
	The New Cost-Sensitive Learning - DTNB
	Experiments
	DTNB’s Optimal Sequential Test
	Single Batch Test Strategies

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

