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Abstract. Mining regression models from spatial data is a fundamental
task in Spatial Data Mining. We propose a method, namely Mrs-SMOTI,
that takes advantage from a tight-integration with spatial databases and
mines regression models in form of trees in order to partition the sample
space. The method is characterized by three aspects. First, it is able to
capture both spatially global and local effects of explanatory attributes.
Second, explanatory attributes that influence the response attribute do
not necessarily come from a single layer. Third, the consideration that
geometrical representation and relative positioning of spatial objects with
respect to a reference system implicitly define both spatial relationships
and properties. An application to real-world spatial data is reported.

1 Introduction

The rapidly expanding market for spatial databases and Geographic Information
System (GIS) technologies is driven by the pressure from the public sector, envi-
ronmental agencies and industries to provide innovative solutions to a wide range
of data intensive applications that involve spatial data, that is, a collection of
(spatial) objects organized in thematic layers (e.g., enumeration districts, roads,
rivers). A thematic layer is characterized by a geometrical representation (e.g.,
point, line, and polygon in 2D) as well as several non-spatial attributes (e.g.,
number of inhabitants), called thematic attributes. A GIS provides the set of
functionalities to adequately store, display, retrieve and manage both geometri-
cal representation and thematic attributes collected within each layer and stored
in a spatial database. Anyway, the range of GIS applications can be profitably
extended by adding spatial data interpretation capabilities to the systems. This
leads to a generation of GIS including Spatial Data Mining (SDM) facilities [11].

Spatial Data Mining investigates how interesting and useful but implicit
knowledge can be extracted from spatial data [8]. Regression is a fundamental
task of SDM where the goal is to mine a functional relationship between a con-
tinuous attribute Yi (response attribute) and m continuous or discrete attributes
Xj,i j = 1, ..., m (explanatory attributes). The training sample consists of spatial
objects. For instance, for UK census data available at the level of Enumeration
Districts (EDs), a possible goal may be estimating the response attribute “num-
ber of migrants” associated to each ED i on the basis of explanatory attributes
Xj,i (e.g., “number of inhabitants”) associated to EDs.
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The simplest approach to mine regression models from spatial data, is based
on standard regression [18] that models a functional relationship in the form:
Yi = β0 + β1X1,i + . . . + βkXk,i, where i is each ED area. The main problem
with this model is that it disregards the arrangement properties due to spatial
structure of data [5] (e.g., the phenomenon of migration is typically stronger in
peripheral EDs). When spatially-dependent heterogeneity of the model can be
anticipated by the analyst, the model can be improved by introducing a dummy
variable Di ∈ {0, 1}, which differentiate the behavior of the model according
to a predefined partitioning of areas in two groups. In this way, the model is
either Yi = β0 + β1X1,i + . . . + βkXk,i + γDi (constant spatial variation) or
Yi = β0 +(β1 +γDi)X1,i + . . .+βkXk,i (regression parameter spatial variation).
However, when the areas of homogeneous dependence cannot be anticipated by
the expert, a solution is represented by model trees [16] that approximate a
piece-wise (linear) function by means of a tree structure, where internal nodes
partition the sample space (as decision trees), while leaves are associated to
(linear) functions. In this way, it is possible to automatically determine different
regression model for different areas.

In this paper, we propose the model tree induction method, namely Mrs-
SMOTI (Multi-relational Spatial Stepwise Model Tree Induction), that faces
several degrees of complexity which characterize the regression problem from
spatial data. In the next section, we discuss these problems and introduce our
solution. Section 3 presents a stepwise approach to mine spatial regression mod-
els. Section 4 focuses on spatial database integration. Finally, an application is
presented in Section 5 and some conclusions are drawn.

2 Spatial Regression: Background and Motivations

While model tree learning has been widely investigated in the data mining liter-
ature [16,10,17], as far as we know, no attention has been given to the problem
of mining model trees from spatial data. Model tree induction from spatial data
raises several distinctive problems: i) some explanatory attributes can have spa-
tially global effect on the response attribute, while others have only a spatially
local effect; ii) explanatory attributes that influence the response attribute not
necessarily come from a single layer, but in most of cases they come from layers
possibly spatially related with the layer that is the main subject of the analysis;
iii) geometrical representation and relative positioning of spatial objects with re-
spect to some reference system implicitly define both spatial relationships (e.g.,
“intersects”, “distance”) and spatial attributes (e.g., “area”, “direction”).

Concerning the first point, it would be useful to identify the global effect of
some attributes (possibly) according to the space arrangement of data. Indeed, in
almost all model trees induction methods, the regression model associated with
a leaf is built on the basis of those training cases falling in the corresponding
partition of the feature space. Therefore, models in the leaves have only a local
validity and do not consider the global effects that some attributes might have
in the underlying model. In model trees, global effects can be represented by
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Fig. 1. An example of spatial model tree with regression and splitting nodes. Node 0

is a regression node that captures a global effect between the unemployed rate (Y) and

the GDP per capita (X1). It is associated to all countries. Node 1 splits the sample

space as depicted in the map. Functions at leaves only capture local effects.

attributes that are introduced in the linear models at higher levels of the tree.
This requires a different tree-structure where internal nodes can either define
a partitioning of the sample space or introduce some regression attributes in
the linear models to be associated to the leaves. In our previous work [10], we
proposed the method SMOTI whose main characteristic is the construction of
trees with two types of nodes: splitting nodes, which partition the sample space,
and regression nodes, which perform only straight-line regression. The multiple
model associated to a leaf is built stepwise by combining straight-line regressions
along the path from the root to the leaf. In this way, internal regression nodes
contribute to the definition of multiple models and capture global effects, while
straight-line regressions at leaves capture only local effects. Detecting global and
local effects over spatial data, allows to model phenomena, that otherwise, would
be ignored. As an example we show a simplistic case: suppose we are interested
in analyzing the unemployed rate in EU. In this case, it may be found that the
unemployed rate of each country is proportional to its GDP (Gross Domestic
Product) per capita. This behavior is independent of the specific country and
represents a clear example of global effect. This global effect corresponds to a
regression node in higher levels of the tree (see Fig. 1).

The second point enlightens that the value of the response attribute may
go beyond the values of explanatory attributes of the spatial object to be pre-
dicted. In particular, it is possible that the response attribute depends on the
attribute values of objects spatially-related to the object to be predicted and
possibly belonging to a different layer. In this point of view, the response at-
tribute is associated to the spatial objects that are the main subjects of the
analysis (target objects) while each explanatory attribute refers either to the
target objects to be predicted or to the spatial objects that are relevant for the
task in hand and are spatially related to the target ones (non-target objects).
This is coherent with the idea of exploiting intra-layer and inter-layer relation-
ships when mining spatial data [1]. Intra-layer relationships describe a spatial
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interaction between two spatial objects belonging to the same layer, while inter-
layer relationships describe a spatial interaction between two spatial objects
belonging to different layers. According to [5], intra-layer relationships make
available both spatially-lagged explanatory attributes useful when the effect of
an explanatory attribute at any site is not limited to the specified site (e.g., the
proportion of people suffering from respiratory diseases in an ED also depends
on the high/low level of pollution of EDs where people daily move) and spatially
lagged response attribute, that is, when autocorrelation affects the response val-
ues (e.g., the price for a good at a retail outlet in a city may depend on the
price of the same good sold by local competitors). Differently, inter-layer rela-
tionships model the fact that the response attribute value observed from some
target object may depend on explanatory attributes observed at spatially related
non target objects belonging to different layers. For instance, if the “EDs” layer
is the subject of the analysis and the response attribute is the mortality rate
associated to an ED, mortality rate may depend on the air-pollution degree on
crossing roads. Although spatial regression systems (such as the R spatial project
- http://sal.uiuc.edu/csiss/Rgeo/index.html) are able to deal with user defined
intra-layer spatial relationships, they ignore inter-layer relationships that can be
naturally modeled by resorting to the multi-relational setting [4].

The third point is due to the fact that geometrical representation and relative
positioning of spatial objects with respect to some reference system implicitly
define both spatial relationships and spatial attributes . This implicit information
is often responsible for the spatial variation over data and it is extremely useful in
modelling [15]. Hence, spatial regression demands for the development of specific
methods that, differently from traditional ones, take the spatial dimension of the
data into account when exploring the spatial pattern space. In this way, thematic
and spatial attribute values of target objects and spatially related non-target
objects are involved in predicting the value of the response attribute.

The need of extracting and mining the information that is implicitly defined
in spatial data motivates a tight-integration between spatial regression method
and spatial database systems where some sophisticated treatment of real-world
geometry is provided for storing, indexing and querying spatial data. This is
confirmed by the fact that spatial operations (e.g., computing the topological
relationships among spatial objects) are available free of charge for data analysts
in several spatial database advanced facilities [6].

In this work, we present Mrs-SMOTI that extends SMOTI by taking advan-
tage of a tight integration with a spatial database in order to mine stepwise
a spatial regression model from multiple layers. The model is built taking into
account all three degrees of complexity presented above.

3 Stepwise Mining of a Spatial Regression Model

Mrs-SMOTI mines a spatial regression model by partitioning training spatial
data according to intra-layer and inter-layer relationships and associating dif-
ferent regression models to disjoint spatial areas. In particular, it mines spatial
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data and performs the stepwise construction of a tree-structured model with
both splitting nodes and regression nodes until some stopping criterion is satis-
fied. In this way, it faces the spatial need of distinguishing among explanatory
attributes that have some global effect on the response attribute and others that
have only local effect. Both splitting and regression nodes may involve several
layers and spatial relationships among them.

Spatial split. A spatial splitting test involves either a spatial relationship condi-
tion or a spatial attribute condition on some layer from S. The former partitions
target objects according to some spatial relationship (either intra-layer or inter-
layer). For instance, when predicting the proportion of people suffering from
respiratory diseases in EDs, it may be significant to mine a different regression
function according to the presence or absence of main roads crossing the ter-
ritory. An extra-consequence of performing such spatial relationship condition
concerns the introduction of another layer in the model. The latter is a test
involving a boolean condition (“X ≤ α vs. X > α” in the continuous case and
“X ∈ {x1, . . . , xk} vs. X /∈ {x1, . . . , xk}” in the discrete one) on a thematic
attribute X of a layer already included in the model. In addition to thematic at-
tributes, an attribute condition may involve a spatial property (e.g., the area for
polygons and the extension for lines), that is implicitly defined by the geometri-
cal structure of the corresponding layer in S. It is noteworthy that only spatial
relationship conditions add new layers of S to the model. Consequently, a split
on a thematic attribute or spatial property involves a layer already introduced
in the model. However, due to the complexity of computing spatial relationships,
we impose that a relationship between two layers can be introduced at most once
in each unique path connecting the root to the leaf.

Coherently with [10], the validity of a spatial splitting test is based on an
heuristic function σ(t) that is computed on the attribute-value representation
of the portion of spatial objects in S falling in tL and tR, that is, the left and
right child of the splitting node t respectively. This attribute-value represen-
tation corresponds to the tuples of S derived according to both spatial rela-
tionship conditions and attribute conditions along the path from the root of
the tree to the current node. We define σ(t) = (n(tL)/(n(tL) + n(tR)))R(tL) +
(n(tR)/(n(tL) + n(tR)))R(tR), where n(tL) (n(tR)) is the number of attribute-
value tuples passed down to the left (right) child. Since intra-layer and inter-layer
relationships lead to a regression model that may include several layers (not nec-
essarily separate), it may happen that n(t) �= n(tL) + n(tR) although the split
in t satisfies the mutual exclusion requirement. This is due to the many-to many
nature of intra-layer and inter-layer relationships. In fact, when several spatial
objects are spatially related to the same object (e.g., a single ED may be inter-
sected by zero, one or more roads), computing spatial relationships may return
a number of attribute-value tuples greater than one. R(tL) (R(tR)) is the Mini-
mum Squared Error (MSE) computed on the left (right) child tL (tR) as follows:

R(tL) =

√
√
√
√

1
n(tL)

∑

i=1...n(tL)

(yi − ŷi)
2 (

R(tR) =

√
√
√
√

1
n(tR)

∑

i=1...n(tR)

(yi − ŷi)
2),
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such that ŷi is the response value predicted according to the spatial regression
model built by combining the best straight-line regression associated to tL (tR),
with all straight-line regressions in the path from the root to tL (tR) [3].
Spatial regression. A spatial regression node performs a straight-line regres-
sion on either a continuous thematic attribute or a continuous spatial property
not yet introduced in the model currently built. Coherently with the stepwise
procedure [3], both response and explanatory attributes are replaced with their
residuals. For instance, when a regression step is performed on a continuous
attribute X , the response attribute is replaced with the residual Y ′ = Y − Ŷ ,
where Ŷ = α̂ + β̂X . The regression coefficients α̂ and β̂ are estimated on the
attribute-value representation of the portion of S falling in the current node.

According to the spatial structure of data, the regression attribute comes
from one of the layers already involved in the model. Continuous thematic and
spatial attributes of these layers, which have not yet been introduced in the
model, are replaced with the corresponding residuals in order to remove the
effect of the regression attribute. Whenever a new layer is added to the model
(by means of a spatial relationship condition), continuous thematic and spatial
attributes, introduced with it, are replaced with the corresponding residuals.
Residuals are contextually computed on the attribute-value representation of
the portion of S falling in the current node. In this way, the effect of regression
attributes previously introduced in the model by regression steps is also removed
by introduced attributes.

The evaluation of a spatial regression step Ŷ = α̂ + β̂X is based on the
heuristic function ρ(t), that is: ρ(t) = min{R(t), σ(t′)}, where t′ is the best
spatial splitting node following the regression step in t. This look-ahead step
involved in the heuristic function above depends on the fact that spatial split
looks for best straight-line regression after the split condition is performed, while
the regression step does not. A fairer comparison would be growing the tree at
a further level to base the computation of ρ(T ) on the best multiple linear
regressions after the regression step on Xi is performed [10].
Stopping criteria. Three different stopping criteria are implemented. The first
requires that a minimal number of target objects fall in current node. The sec-
ond stops the induction process when the coefficient of determination is greater
than a threshold [18]. This coefficient is a scale-free one-number summary of the
strength of the relation between explanatory attributes in the actual multiple
model and the response attribute. Finally, the third stops the induction process
when no further regression step can be performed (i.e. all continuous attributes
are included in the current model) also after introducing some new layer.

4 Spatial Database Integration

Most spatial data mining systems process data in main memory. This results in
high performance for computationally intensive processes when enough memory
is available to store all necessary data. However, in spatial data intensive pro-
cesses it is important to exploit powerful mechanisms for accessing, filtering and
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indexing data, such as those available in spatial DBMS (DataBase Management
Systems). For instance, spatial operations (e.g., computing the topological rela-
tionships among spatial objects) supported by any spatial DBMS take advantage
from spatial indexes like Quadtrees or Kd-tree [14]. This motivates a tight inte-
gration of spatial data mining systems and spatial DBMS in order to i) guarantee
the applicability of spatial data mining algorithms to large spatial datasets; ii)
exploit useful knowledge of spatial data model available, free of charge, in the
spatial database, iii) specify directly what data stored in a database have to be
mined, iv) avoid useless preprocessing leading to redundant data storage that
may be unnecessary when part of space of the hypothesis may be never explored.

Some examples of integrating spatial data mining and spatial database sys-
tem are presented in [11] for classification tasks and in [1] for association rules
discovery tasks. In both cases, a data mining algorithm working in first-order
logic is only loosely integrated with a spatial database by means of some middle
layer module that extracts spatial attributes and relationships independently
from the mining step and represents these features in a first-order logic formal-
ism. Thus, data mining algorithms are practically applied to preprocessed data
and this preprocessing is user-controlled. Conversely, in [6] a spatial data mining
system, named SubgroupMiner, is proposed for the task of subgroup discovery
in spatial databases. Subgroup discovery is here approached by taking advan-
tage from a tight integration of the data mining algorithm with the database
environment. Spatial relationships and attributes are then dynamically derived
by exploiting spatial DBMS extension facilities (e.g., packages, cartridges or ex-
tenders) and used to guide the subgroup discovery.

Following the inspiration of SubgroupMiner, we assume an object-relational
(OR) data representation, such that spatial patterns representing both splitting
and regression nodes are expressed with spatial queries. These queries include
spatial operators based on the non-atomic data type for geometry consisting in
an ordered set of coordinates (X, Y ) representing points, lines and polygons.
Since no spatial operator is present in basic relational algebra or Datalog, we
resort to an extension of the OR-DBMS Oracle Spatial Cartridge 9i where spatial
operators to compute spatial relationships and to extract spatial attributes are
made available free of charge [6]. These operators can be called in SQL queries.
For example: SELECT * FROM EDs x, Roads y WHERE SDO GEOM.

RELATE(x.geometry,’ANYINTERACT’,y.geometry, 0.001) = ’TRUE’
This spatial query retrieves the pairs 〈ED, Road〉 whose topological relationship
is “not disjoint” by means or the Oracle operator ”RELATE”. It is noteworthy
that, the use of such SQL queries, appears to be more direct and much more
practical than formulating non-trivial extension of relational algebra or Datalog
such that those provided in constraint database framework [9].

When running a spatial query (associated to a node of the tree), the result
is a set of tuples describing both thematic attributes and spatial attributes of
involved layers. The FROM clause includes layers (not necessarily different) in
the model at the current node. The WHERE clause includes split conditions
found along the path from the root to the current node. The negation of either a
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SELECT T1.X1 as T1X1, T.X2 as T1X2, T1.Y as T1Y,

SDO_GEOM.SDO_AREA(T1.G,0.001) T1AREA

FROM Q

SELECT T1.X1 as T1X1, T.X2 as T1X2, T1.Y as T1Y,

SDO_GEOM.SDO_AREA(T1.G,0.001) as T1AREA , T2.X1

as T2X1, T2.X2 asT2X2 SDO_GEOM.SDO_AREA(T2.G,

0.001) as T2AREA

FROM Q T1, S T2

WHERE SDO_GEO.RELATE(T1.G,’ANYINTERACT’,T2.G,0.001)=

’TRUE’

SELECT T1.X1 as T1X1, T.X2 as T1X2, T1.Y as T1Y,

SDO_GEOM.SDO_AREA(T1.G,0.001) T1AREA

FROM Q T1

WHERE T1.X1 not in (SELECT T1.X1

FROM Q T1, S T2

WHERE SDO_GEO.RELATE(T1.G,’ANYINTERACT’,

T2.G, 0.001)= ’TRUE’)

SELECT T1.X1 as T1X1,

avg (3.7- 7.5 T2.X2 +0.5 –0.001(SDO_GEOM.SDO_AREA (T1.G,0.001) –

0.1 –0.005 T2.X2 ) T1Y

FROM Q T1, S T2

WHERE SDO_GEO.RELATE(T1.G,’ANYINTERACT’,T2.G,0.001)=

’TRUE’

GROUP BY T1.X1

…

SELECT T1.X1 as T1X1, T.X2 as T1X2, T1.Y –3.7+ 7.5 T2.X2 as T1Y ,

SDO_GEOM.SDO_AREA(T1.G,0.001) – 0.1 –0.005 T2.X2

as T1AREA , T2.X1 as T2X1, T2.X2 asT2X2

SDO_GEOM.SDO_AREA(T2.G, 0.001)+3-0.03T2.X2 as

T2AREA

FROM Q T1, S T2

WHERE SDO_GEO.RELATE(T1.G,’ANYINTERACT’,T2.G,0.001)=

’TRUE’

Fig. 2. An example of spatial model tree with regression, splitting and leaf nodes

expressed by means of spatial queries assuming that training data are stored in spatial

layers (e.g., Q and R) of a spatial database

spatial relationship condition or an attribute condition involving some attribute
of a non-target layer is transformed into a negated nested spatial sub-query.
This is coherent with the semantic of tests involving multiple tables of a rela-
tional database [2]. Finally, the SELECT clause includes thematic and spatial
attributes (or their residuals) from the layers involved in the WHERE clause.

Leaf nodes are associated with aggregation spatial queries, that is, spatial
queries where all tuples referring the same target object are grouped together.
In this way, the prediction of the response variable is the average response value
predicted on the set of attribute-value tuples describing the unique target object
to be predicted. This means that spatial model trees can be expressed in form
of a set of SQL spatial queries (see Fig. 2). Queries are stored in XML format
that can be subsequently used for predicting (unknown) response attributes.

5 Spatial Regression on Stockport Census Data

In this section we present a real-world application concerning the mining of spa-
tial regression models. We consider both 1991 census and digital map data pro-
vided in the context of the European project SPIN! (Spatial Mining for Data of
Public Interest) [12]. This data concerns Stockport, one of the ten metropolitan
districts in Greater Manchester (UK) which is divided into twenty-two wards for
a total of 589 census EDs. Spatial analysis is enabled by the availability of vec-
torized boundaries for 578 Stockport EDs as well as by other Ordnance Survey
digital maps of UK. Data are stored in an Oracle Spatial Cartridge 9i database.
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The application in this study investigates the number of unemployed people
in Stockport EDs according to the number of migrant people available for each
ED in census data as well as geographical factors represented in topographic
maps stored in form of layers. The target objects are the Stockport EDs, while
other layers, such as, shopping (53 objects), housing (9 objects) and employment
areas (30 objects) are the non target objects. The EDs play the role of both target
objects and non target objects when considering intra-layer relationship on EDs.

Two experimental settings are defined. The first setting (BK1) is obtained by
exclusively considering the layer representing EDs. The second setting (BK2) is
obtained by considering all the layers. In both settings, intra-layer relationships
on EDs make possible to model the unemployment phenomenon in Stockport
EDs by taking into account the self-correlation on the spatially lagged explana-
tory attributes of EDs. The auto-correlation on the spatially-lagged response
attribute can be similarly exploited during the mining process. In this study,
we consider (intra-layer and inter-layer) spatial relationships that describe some
(non disjoint) topological interaction between spatial objects. Furthermore, we
consider area of polygons and extension of lines as spatial properties.

In order to prove the advantage of using intra-layer and inter-layer relation-
ships in the mining process, we compare the spatial regression model mined by
Mrs-SMOTI with the regression models mined by SMOTI and M5’[17]. Since
SMOTI and M5’ work under single table assumption, we transform the origi-
nal object-relational representation of Stockport data in a single relational table
format. Two different transformations are considered. The former (P1) creates a
single table by deriving all thematic and spatial attributes from layers according
to all possible intra-layer and inter-layer relationships. This transformation leads
to generate multiple tuples for the same target object. The latter transformation
(P2) differs from the previous one because it does not generate multiple tuples
for the same target object. This is obtained by including aggregates (i.e., the av-
erage for continuous values and the mode for discrete values)[7] of the attributes
describing the non target objects referring to the same target object1.

Model trees are mined by requiring that the minimum number of spatial
target objects falling in an internal node must be greater than the square root
of the number of training target objects, while the coefficient of determination
must be below 0.80. Comparison is performed on the basis of the average MSE,
number of regression nodes and leaves obtained by means of the same five-fold
cross validation of Stockport data. Results are reported in Table 1.

The non-parametric Wilcoxon two-sample paired signed rank test [13] is used
for the pairwise comparison of methods. In the Wilcoxon signed rank test, the
summations on both positive (W+) and negative (W-) ranks determine the
winner. Results of Wilcoxon test are reported in Table 2.

1 In both P1 and P2 transformations the attribute-value dataset is composed by 5
attibutes for BK1 (6 when including the lagged response) and 11 for BK2 (12 when
including the lagged response). The number of tuples for P1 is 4033 for BK1 and
4297 for BK2. In the case of P2, the number of tuples is 578 in both settings.
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Table 1. Average MSE, No. of leaves and regression nodes of trees induced by Mrs-

SMOTI, SMOTI and M5’. L1 is ”No lagged response”, L2 is ”Lagged response”.

Setting MSE Leaves RegNodes
BK1 BK2 BK1 BK2 BK1 BK2
L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

Mrs-SMOTI 12.34 13.74 11.99 10.92 19.80 23.40 23.60 23.60 3.4 6.6 3.8 6.2

SMOTI P1 12.91 10.23 20.11 13.0 101.6 107.6 104.0 111.8 6.2 5.0 15.0 11.4
P2 11.89 18.17 19.71 15.80 41.00 24.80 42.40 44.20 3.4 4.0 10.2 11.6

M5’ P1 13.52 12.41 12.92 12.30 433.6 872.0 408.6 711.2 - - - -
P2 12.44 9.19 12.48 9.59 198.0 199.4 199.2 197.4 - - - -

Results confirm that Mrs-SMOTI is better or at worst comparable to SMOTI
in terms of predictive accuracy. This result is more impressive when we consider
the regression model mined when both intra-layer and inter-layer relationships
are ignored. The average MSE of model trees mined by SMOTI taking into
account only the number of migrants and the area of EDs is 15.48.

Moreover, when we consider results of SMOTI on data transformed accord-
ing to P1 and P2, we note that the stepwise construction takes advantage of the
tight-integration of Mrs-SMOTI with the spatial DBMS that avoids the gener-
ation of useless features (relationships and attributes). The side effect of useless
features may lead to models that overfit training data, but fail in predicting
new data. In a deeper analysis, we note that even when SMOTI, in average,
outperforms Mrs-SMOTI in terms of MSE, the Wilcoxon test does not show any
statistically significant difference. Results on the two data settings show that
mining the geographical distribution of shopping (housing or employment) areas
over EDs (i.e., the spatial relationships between EDs and shopping areas, shop-
ping areas and shopping areas, shopping areas and employment areas, and so
on) decreases the average MSE of models mined by Mrs-SMOTI, while no sig-
nificant improvement is observed in mining the same information with SMOTI.
The autocorrelation on the response improves performance of Mrs-SMOTI only
for BK2 level (10.92 vs. 11.99) without significantly increasing tree size.

Table 2. Mrs-SMOTI vs SMOTI and M5’: results of the Wilcoxon test on the MSE of

trees. If W+≤ W- then results are in favour of Mrs-SMOTI. The statistically significant

values (p ≤ 0.1) are in boldface. L1 is ”No lagged response”, L2 is ”Lagged response”.

Setting Mrs-SMOTI vs.
SMOTI P1

Mrs-SMOTI vs.
SMOTI P2

Mrs-SMOTI vs.
M5’ P1

Mrs-SMOTI vs.
M5’ P2

W+ W- p W+ W- p W+ W- p W+ W- p

BK1
L1 6 9 0.81 9 6 0.81 3 12 0.310 7 8 1.000
L2 10 5 0.63 6 9 0.81 8 7 1.000 15 0 0.060

BK2
L1 1 14 0.125 0 15 0.06 4 11 0.430 6 9 0.810
L2 0 15 0.06 3 12 0.31 0 15 0.060 15 0 0.060
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- split on EDs’ number of migrants [≤ 47] (578 EDs)
- regression on EDs’ area (458 EDs)

- split on EDs - Shopping areas spatial relationship (458 EDs)
- split on Shopping areas’ area (94 EDs) ...
- split on EDs’ number of migrants (364 EDs) ...

- split on EDs’ area (120 EDs)
- leaf on EDs’ area (22 EDs)
- regression on EDs’ area (98 EDs) ...

Fig. 3. Top-level description of a portion of the model mined by Mrs-SMOTI on the

entire dataset at BK2 level with no spatially lagged response attributes

The number of regression nodes and leaves are indicators of the complexity
of the induced regression models. In this case, results show that the model in-
duced by Mrs-SMOTI is much simpler than the model induced by SMOTI in
both settings independently from data transformation. The relative simplicity
of the spatial regression models mined by Mrs-SMOTI makes them easily to be
interpreted. In particular, the tree structure can be easily navigated in order
to distinguish among global and local effects of explanatory attributes. For in-
stance, in Fig. 3 it is shown the top-level description of the spatial regression
model mined by Mrs-SMOTI on the entire dataset at BK2 level with no spatially
lagged response attributes. Mrs-SMOTI captures the global effect of the area of
EDs over Stockport covered by the 458 EDs having “number of migrants ≤ 47”.
The effect of this regression is shared by all nodes in the corresponding sub-tree.

Finally, the comparison of Mrs-SMOTI with M5’, does not show any clear
difference in terms of MSE. Anyway, M5’ presents two important disadvantages
with respect to Mrs-SMOTI. First, M5’ cannot capture spatial global and local
effects. Second, mined model trees cannot be interpreted by humans because of
the complexity of the models (there is an increase of one order of magnitude in
the number of leaves from Mrs-SMOTI to M5’)

6 Conclusions

In this paper we have presented a spatial regression method Mrs-SMOTI that is
able to capture both spatially global and local effects of explanatory attributes.
The method extends the stepwise construction of model trees performed by its
predecessor SMOTI in two directions. First, by taking advantage from a tight-
integration with a spatial database in order to mine both spatial relationships
and spatial attributes which are implicit in spatial data. Indeed, this implicit
information is often responsible for the spatial variation over data and it is ex-
tremely useful in regression modelling. Second, the search strategy is modified
in order to mine models that capture the implicit relational structure of spatial
data. This means that spatial relationships (intra-layer and inter-layer) make
possible to consider explanatory attributes that influence the response attribute
but do not necessarily come from a single layer. In particular, intra-layer re-
lationships make available spatially lagged response attributes in addition to
spatially lagged explanatory attributes.
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Experiments on real-world spatial data show the advantages of the proposed
method with respect to SMOTI. As future work, we intend to extend the method
in order to mine both geometrical (e.g., distance) and directional (e.g., north of)
relationships in addition to topological relationships.
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