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Abstract. We analyse perceptron-like algorithms with margin consider-
ing both the standard classification condition and a modified one which
demands a specific value of the margin in the augmented space. The
new algorithms are shown to converge in a finite number of steps and
used to approximately locate the optimal weight vector in the augmented
space. As the data are embedded in the augmented space at a larger dis-
tance from the origin the maximum margin in that space approaches
the maximum geometric one in the original space. Thus, our procedures
exploiting the new algorithms can be regarded as approximate maximal
margin classifiers.

1 Introduction

Rosenblatt’s perceptron algorithm [6] is the simplest on-line learning algorithm
for binary linear classification [3]. A variant of the perceptron also exists which
unlike the original algorithm aims at a solution hyperplane with respect to which
the data possess a non-zero margin. The problem, however, of finding the optimal
hyperplane has been successfully addressed only with the advent of the Adatron
algorithm [1] and later by the Support Vector Machines (SVMs) [7, 2].

Our purpose here is to address the problem of maximal margin classification
using the less time consuming, compared to SVMs, perceptron-like algorithms.
We work in a space augmented by one additional dimension [3] in which we
embed the data by placing them at a distance ρ in the extra dimension and
replace the perceptron classification condition with a new one insisting on a spe-
cific value of the margin in this augmented space. We show that the algorithms
with the modified condition converge in a finite number of steps and use them
to approximately locate the solution with maximum margin in the augmented
space. As ρ → ∞ the maximum margin in the augmented space approaches the
maximum geometric one in the original space. Thus, our algorithmic procedures
can be considered as approximate maximal margin classifiers.

Whilst proving convergence of the new algorithms we found it useful to intro-
duce the notion of stepwise convergence, the property of the algorithms that ap-
proach the optimal solution vector at each step. Through a formulation involving
stepwise convergence we provide a unified approach in establishing convergence
for a large class of algorithms with additive perceptron-like update rules.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 750–758, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Analysis of Generic Perceptron-Like Large Margin Classifiers 751

Section 2 contains our theoretical analysis. In Sect. 3 we describe algorith-
mic implementations aiming at an approximate determination of the maximum
margin. Finally, Sect. 4 contains our conclusions.

2 Theoretical Analysis

In what follows we make the assumption that we are given a training set which,
even if not initially linearly separable can, by an appropriate feature mapping
into a space of a higher dimension, be classified into two categories by a lin-
ear classifier. This higher dimensional space in which the patterns are linearly
separable will be the considered space. By adding one additional dimension and
placing all patterns in the same position ρ0 = ρ > 0 in that dimension we
construct an embedding of our data into the so-called augmented space. The ad-
vantage of this embedding is that the linear hypothesis in the augmented space
becomes homogeneous.

We concentrate on algorithms that update the augmented weight vector at by
adding a suitable positive amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The general form of such an
update rule is

at+1 = at + ηftyk , (1)

where η is the (constant) learning rate and ft a function of the current step
(time) t which we require to be positive and bounded, i.e.

0 < fmin ≤ ft ≤ fmax . (2)

For the special case of the perceptron algorithm ft = 1. Each time the prede-
fined misclassification condition is satisfied by a training pattern the algorithm
proceeds to the update of the weight vector. Throughout our discussion a reflec-
tion with respect to the origin in the augmented space of the negatively labelled
patterns is assumed in order to allow for a common classification condition for
both categories of patterns [3]. Also, we use the notation R = max

k
‖yk‖ and

r = min
k

‖yk‖.
The relation characterising optimally correct classification of the training

patterns by a weight vector u of unit norm in the augmented space is

u · yk ≥ γd ∀k . (3)

The quantity γd, which we call the optimal directional margin, is defined as

γd = max
u:‖u‖=1

min
k

{u · yk} (4)

and is obviously bounded from above by r. The optimal directional margin de-
termines the maximum distance from the origin in the augmented space of the
hyperplane normal to u placing all training patterns on the positive side. In the
determination of this hyperplane only the direction of u is exploited with no
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reference to its projection onto the original space. As a consequence the above
maximum margin in the augmented space is not necessarily realised with the
same weight vector that gives rise to the optimal geometric margin in the origi-
nal space. Notice, however, that the existence of a directional margin means that
there exists a geometric margin at least as large as the directional one.

First, in Sect. 2.1, we examine algorithms in which the misclassification con-
dition takes the form

at · yk ≤ b , (5)

where b is a positive parameter. A slight transformation of (5) to

ut · yk ≤ b

‖at‖
, (6)

where ut is the weight vector at normalised to unity, reveals that the minimum
directional margin required by the standard margin condition is lowered as the
length of the weight vector grows.

Subsequently, in Sect. 2.2, we examine algorithms with a misclassification
condition of the form

ut · yk ≤ β , (7)

where β is a positive parameter. Notice that the above condition amounts to
requiring a minimum directional margin which is not lowered with the number
of steps. Therefore, successful termination of the algorithm leads to a solution
with a guaranteed geometric margin at least as large as the directional margin
β found. This is an important difference from the misclassification condition
of (5) which, as (6) illustrates, cannot by itself guarantee a minimum margin.
Obviously, convergence of the algorithm is not possible unless

β < γd . (8)

The condition (7) involving only the direction of the weight vector motivates new
positive and bounded functions ft like the function ft = (βu − ut · yk)/‖yk‖
with βu > β. We consider two cases depending on whether the length of the
augmented weight vector is free to grow or is kept constant throughout the
algorithm. In the last category of algorithms a fixed-length weight vector is
achieved by a renormalisation of the newly produced weight vector to the target
margin value β each time an update according to (1) takes place.

A very desirable property of an algorithm is certainly progressive convergence
at each step meaning that at each update ut moves closer to the optimal direction
u. Let us assume that

ut · u > 0 . (9)

Because of (9) the criterion for stepwise angle convergence, namely

∆ ≡ ut+1 · u − ut · u > 0 , (10)

can be equivalently expressed as a demand for positivity of D

D ≡ (ut+1 · u)2 − (ut · u)2 = 2
ηft

‖at‖
(ut · u)

∥
∥
∥
∥
ut +

ηft

‖at‖
yk

∥
∥
∥
∥

−2

A , (11)
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where use has been made of the update rule (1) and A is defined by

A ≡ yk · u − (ut · u)(yk · ut) − 1
2

ηft

‖at‖

(

‖yk‖2 (ut · u) − (yk · u)2

(ut · u)

)

. (12)

Positivity of A leads to positivity of D on account of (2) and (9) and conse-
quently to stepwise convergence. Actually, convergence occurs in a finite number
of steps provided that after some time ‖at‖ and A become bounded from below
by a positive constant and ‖at‖ increases at most linearly with t. Following this
rather unified approach one can show that sooner or later the algorithms under
consideration enter the stage of stepwise convergence and terminate successfully
in a finite number of steps. Better time bounds are, however, obtainable by
alternative methods.

Finally, Sect. 2.3 contains our derivations which place an upper bound on the
optimal geometric margin of a training set in terms of the optimal directional
one, thereby leading to an estimate of the optimal geometric margin.

2.1 Algorithms with the Standard Margin Condition

We first analyse the algorithms with the general update rule (1) by calculating
an upper bound on the number of updates until a solution is found, thereby
extending Novikoff’s theorem [5, 4]. From the difference at+1 · u − at · u we
obtain a relation whose repeated application, assuming a0 = 0, implies

‖at‖ ≥ at · u ≥ ηfminγdt . (13)

Also the difference ‖at+1‖2 − ‖at‖2 gives a relation whose repeated application
leads to

‖at‖ ≤
√

(η2f2
maxR

2 + 2ηfmaxb)t . (14)

Combining (13) and (14) we get Novikoff’s time bound

t ≤ tN ≡ f2
max

f2
min

R2

γ2
d

(

1 +
2

ηfmax

b

R2

)

. (15)

We next turn to a discussion of stepwise convergence. From (13) it is clear that
for t > 0 (9) holds. Also, yk · u appearing in A is definitely positive due to (3)
whereas ‖at‖ increases with time because of (13), thereby making the term of
A linear in η negligible. Moreover, (6) shows that the term (ut · u)(yk · ut) is
suppressed with time. Thus, for time t larger than a critical time tc positivity of
A and consequently of D is accomplished. By using (3), (5) and (13) we obtain

A ≥ γd − 1
2ηfminγdt

(

2b + ηfmax(R2 − γ2
d)

)

. (16)

From the above inequality the time sufficient for stepwise convergence to begin
is

tc ≡ 1
2

fmax

fmin

R2

γ2
d

(

1 +
2

ηfmax

b

R2 − γ2
d

R2

)

<
1
2

fmin

fmax
tN . (17)
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Therefore, unless the algorithm terminates much before Novikoff’s time tN is
exhausted, it will definitely enter the phase of stepwise convergence. Actually,
because of (13), (14) and (16) an alternative proof of convergence in a finite
number of steps is obtained.

It would be interesting to estimate the margin that the algorithm is able
to achieve [4]. For t = tN (13) and (14) hold as equalities leading to the largest
possible value of ‖at‖, namely ‖atN‖ = ηfminγdtN, which provides a lower bound
βmin = b/‖atN‖ on the directional margin β = b/‖at‖ appearing in (6)

βmin =
fmin

fmax

γd

(2 + fmax(ηR2/b))
=

1
2

fmin

fmax
γd

(

1 − f2
max

f2
min

R2

γ2
d

t−1
N

)

. (18)

The above guaranteed value of the directional margin acquires a maximum of
1
2

fmin
fmax

γd ≤ 1
2γd for b � ηR2 or tN � R2/γ2

d.

2.2 Algorithms with Fixed Directional Margin Condition

Algorithms with Free-Length Weight Vector. In the case that at is free
to grow indefinitely and a0 = 0 (13) is again obtained and as a consequence
for t > 0 (9) is once more recovered. Therefore, positivity of D is equivalent
to stepwise convergence. By using (3) and (7) we get a lower bound on the
η-independent part of A

yk · u − (ut · u)(yk · ut) ≥ γd − β , (19)

which is definitely positive on account of (8). Furthermore, because of (13) the
terms of A linear in η, which are not necessarily positive, become less important
with time leading to positivity of A and consequently of D for t larger than a
critical time tc. More formally, employing (3), (7) and (13) we can place a lower
bound on A

A ≥ γd − β − 1
2

fmax

fmin

1
γdt

(R2 − γ2
d) (20)

and demanding positivity estimate the time tc sufficient for the onset of stepwise
convergence

tc ≡ 1
2

fmax

fmin

R2

γ2
d

(

1 − γ2
d

R2

)(

1 − β

γd

)−1

. (21)

Notice the crucial dependence of tc on γd − β. Since we initially set the weight
vector to zero, at is entirely generated by the first t updates and its norm satisfies
the obvious bound

‖at‖ ≤ ηfmaxRt . (22)

Then, stepwise convergence along with (13), (20) and (22) lead to convergence
in a finite number of steps.

Following a Novikoff-like procedure and provided fminγd − fmaxβ > 0 (which
always holds if ft = 1) we can obtain for every positive integer N a relation

t − N

CN + ln
√

t − 1
≤

(
fmax

fmin

R

γd

)2 (

1 − fmax

fmin

β

γd

)−1

(23)
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constraining the growth of t. Here

CN = N
fmin

fmax

γd

R

(

1 − fmin

fmax

γd

R

)

− 1
2

(

ln N − 1
N

)

. (24)

If [x] denotes the integer part of x the optimal value of N is given by

Nopt =

[

1
2

fmax

fmin

R

γd

(

1 − β

R

)−1
]

+ 1 . (25)

Notice that both (21) and (23) are independent of η. This is an interesting prop-
erty of all algorithms of this class with a0 = 0 under the additional assumption
that ft depends on at only through ut. This may be understood by observing
that a rescaling of η results in a rescaling of at by the same factor which does
not affect either the hyperplane normal to at or the classification condition.

Algorithms with Fixed-Length Weight Vector. We demand that ut ·u > 0
for all t which requires an appropriate choice of the initial condition. Notice that
in this particular class of algorithms at cannot be set initially to zero since
‖at‖ = β. We propose that u0 be chosen in the direction of one of the yk’s.
Then, due to the form of the update rule and the positivity of ft, it is obvious
that at is a linear combination with positive coefficients of the training patterns.
Therefore, since according to (3) yk satisfies yk · u > 0 the same is true for
at and consequently for ut. Positivity of ut · u allows us to use positivity of D
as a criterion for stepwise convergence. Taking a closer look at A reveals that
according to (8) and (19) the η-independent term remains positive throughout
the algorithm. For the term linear in η which has no definite sign we conclude
that an appropriate choice of η can render it smaller than the η-independent one,
thereby leading to stepwise convergence from the first step of the algorithm. More
specifically, using (3), (7) and the fact that ‖at‖ = β we have

A ≥ γd − β − ηfmax

2β
(R2 − γ2

d) . (26)

Positivity of A and D is achieved for η smaller than the critical value

ηc ≡ 2
fmax

(γd − β)β
R2

(

1 − γ2
d

R2

)−1

. (27)

Taking into account (9) and (26) and given that ‖at‖ = β stepwise convergence
from the first step implies convergence in a finite number of steps.

By placing a t-independent lower bound on ∆ defined in (10) and repeatedly
applying the resulting inequality it is possible to derive an upper bound on t.
For the optimal value of the learning rate

ηopt 
 1
fmax

(γd − β)β
R2

(

1 +
2β

R

)−1

(28)
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we have

t < 2
fmax

fmin

R2

(γd − β)2

(

1 +
2β

R

) (

1 − (γd − β)R
(R + 2β)2

)−1

. (29)

This bound is rather analogous to the one of the perceptron without margin.
The main differences are a factor of 2 and the replacement of γ2

d by (γd − β)2.

2.3 Estimating the Optimal Geometric Margin

If we denote by a = [w w0] a weight vector in the augmented space that classifies
the patterns correctly the geometric margin γ(a) of the set is

γ(a) =
‖a‖
‖w‖γd(a) =

1
‖w‖min

k
{a · yk} =

1
‖w‖min

k
{w · xk + w0ρ0} , (30)

where γd(a) is the corresponding directional margin and yk = [xk ρ0]. Notice
that |w0|ρ/‖w‖ (with ρ = |ρ0|) is the distance from the origin of the hyperplane
normal to w which cannot exceed Rx = max

k
‖xk‖. Hence, |w0|/‖w‖ ≤ Rx/ρ.

As a consequence, ‖w‖ ≤ ‖a‖ =
√

‖w‖2 + w2
0 ≤ ‖w‖

√

1 + R2
x/ρ2 = ‖w‖ R/ρ

given that R2 = ρ2 + R2
x. Then, (30) leads to γd(a) ≤ γ(a) but also to

γ(a) ≤ R

ρ
γd(a) . (31)

In the case that the weight vector a is the optimal one aopt maximising the
geometric margin and taking into account that γd = max

a
γd(a) ≥ γd(aopt) and

γ ≡ γ(aopt) = max
a

γ(a) ≥ max
a

γd(a) = γd the inequality (31) leads to

1 ≤ γ

γd
≤ R

ρ
. (32)

In the limit ρ → ∞, R/ρ → 1 and from (32) γd → γ. Thus, with ρ increasing
the optimal directional margin γd approaches the optimal geometric one γ.

3 Algorithmic Implementation

In this section we present algorithms seeking the optimal directional margin
which, however, due to the analysis of Sect. 2.3 could be used to approximately
obtain the optimal geometric margin.

A first implementation makes repeated use of the algorithms of Sect. 2.2. In
each round of its application the algorithm looks for a fixed directional margin
β according to the condition ut · yk > β. Each round lasts until the condition is
satisfied by all yk’s or until an upper bound on the number of checks is reached.
The range of feasible β values and therefore the interval that the algorithm should
search extends from 0 to r. The search can be performed efficiently by a Bolzano-
like bisection method with an initial target margin β = r

2 and a step parameter
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set initially to r
2 . If the algorithm comes up with a solution without exhausting

the upper number of checks the round is considered successful. The weight vector
is stored as the best solution found so far and is exploited as the initial condition
of the next trial, thereby speeding up the procedure substantially. One could also
envisage using the final weight vector of an unsuccessful previous round as the
initial weight vector of a subsequent one until the first successful trial is reached.
At the end of each trial the step is divided by 2. A successful (unsuccessful) trial
is followed by an increase (decrease) of the target margin β by the current step
value. Therefore, for a sufficiently large upper number of checks, the procedure
guarantees that the deviation of β from the maximum margin is halved in each
round. Termination occurs when the step reaches a certain predefined value.

A second possibility is to first use the standard perceptron algorithm with
margin of Sect. 2.1 in order to obtain a solution with a guaranteed fraction of
the existing directional margin given by (18) and then attempt to incrementally
boost the margin obtained by repeatedly employing the algorithms of Sect. 2.2.
The initial condition of each round of boosting will be the final weight vector
of the previous round and the step by which the target margin increases will be
determined as a fraction of the margin found in the first stage. The algorithm
ends with the first unsuccessful trial. An analogous boosting procedure could
follow a first stage of successful employment of the Bolzano-like method.

The above procedures were tested on artificial as well as real-life data with
encouraging preliminary results.

4 Conclusions

We examined perceptron-like algorithms with margin and developed a criterion
for the stronger requirement of stepwise convergence which allowed us to adopt
a unified approach in the analysis. We also proposed a new class of such al-
gorithms in which the standard classification condition is replaced by a more
stringent one insisting on a fixed value of the directional margin and proved
that they converge in a finite number of steps. Two implementations made
possible a fast search for the optimal directional margin. We finally showed
that as the data are placed increasingly far in the augmented space the opti-
mal directional margin approaches the optimal geometric one. This observation
transforms our procedures into fast and simple approximate maximal margin
classifiers.
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