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Abstract. Inductive Logic Programming (ILP) is an established sub-
field of Machine Learning. Nevertheless, it is recognized that efficiency
and scalability is a major obstacle to an increased usage of ILP sys-
tems in complex applications with large hypotheses spaces. In this work,
we focus on improving the efficiency and scalability of ILP systems by
exploring tabling mechanisms available in the underlying Logic Program-
ming systems. Tabling is an implementation technique that improves the
declarativeness and performance of Prolog systems by reusing answers
to subgoals. To validate our approach, we ran the April ILP system in
the YapTab Prolog tabling system using two well-known datasets. The
results obtained show quite impressive gains without changing the accu-
racy and quality of the theories generated.

1 Introduction

Inductive Logic Programming (ILP) has been successfully applied to problems
in several application domains [1]. Nevertheless, the flexibility of ILP comes at
a price: for complex applications with large hypotheses spaces, ILP systems can
take several hours, if not days, to return a theory. Past research on improving
the efficiency of ILP systems has mainly focused in reducing their sequential
execution time, either by reducing the number of hypotheses generated [2,3],
or by efficiently testing candidate hypotheses [4,5]. One key observation in this
research is that ILP search space is highly redundant: we repeatedly test similar,
and sometimes even the same, hypotheses. This argues for using techniques such
as memoing or tabling [6], that have been developed for this very purpose.

On the other hand, ILP systems are often developed on top of logic pro-
gramming systems, such as Prolog systems. One reason is that ILP systems can
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benefit from the extensive work done in improving the performance of Prolog
systems. An emerging technology is tabling, that showed to be very effective for a
variety of applications. Tabling based models can reduce the search space, avoid
looping, and have better termination properties than traditional Prolog based
models. The question thus arises if the tabling mechanisms being developed for
efficient execution of logic programs can be useful in improving ILP performance.

In this work, we show that tabling can indeed significantly reduce the exe-
cution time of ILP applications. We present two different approaches to achieve
this goal. Our first approach is a direct application of tabling to query execution.
The second approach is designed to take advantage of the redundancy in ILP
search. We validate our approach by experimenting the April ILP system [7] on
two well known ILP datasets. One advantage of using April in our study is that
it includes a strong caching mechanism, thus giving us a good baseline for our
studies. Tabling is implemented through the YapTab Prolog tabling system [8].

The remainder of the paper is organized as follows. First, we introduce the
motivation for our work. Then, we briefly describe tabling for logic programs.
Next, we discuss how tabling can be used to speedup ILP applications. We then
present initial experimental results and conclude by outlining some conclusions.

2 Background and Motivation

The fundamental goal of an ILP system is to find a consistent and complete
theory, from a set of examples and prior knowledge, the background knowledge,
that explains all given positive examples, while being consistent with the given
negative examples. In general, the background knowledge and the set of examples
can be arbitrary logic programs.

Since it is not usually obvious which set of hypotheses should be selected as
the theory, an ILP system must traverse the hypotheses space searching for a
set with the desired properties. A general ILP system thus spends most of its
time evaluating hypotheses, either because the number of examples is large or
because testing each example is computationally hard.

path(G,X,Z):- path(G,X,Y),path(G,Y,Z).
path(G,X,Z):- edge(G,X,Z).

edge(g1,a,b).            edge(g2,a,b).
edge(g1,b,a).            edge(g2,b,c).

cyclic(g1).
...

Positive ExamplesBackground Knowledge

a
b

graph g2

a b

graph g1

c
cyclic(g2).
...

Negative Examples

Fig. 1. Representing cyclic graphs in a ILP dataset

An important char-
acteristic of ILP sys-
tems is that they gener-
ate candidate hypothe-
ses (clauses) which have
many similarities among
them. Usually, these
similarities tend to cor-
respond to common pre-
fixes (subgoals) among
the candidate hypothe-
ses. Consider, for example, a background knowledge containing a set of directed
graphs, represented by edge/3 facts, with a relation of reachability, given by a
path/3 predicate (see Fig. 1 for details). Consider also that we are interested in
learning the concept of being a cyclic graph.



On Applying Tabling to Inductive Logic Programming 709

Now assume that, during the search process, the ILP system generates an
hypothesis ’cyclic(G):- path(G,X,Y).’ which obtains good coverage, that is,
the number of positive examples covered by it is high and the number of negative
example is low. Then, it is quite possible that the system will use it to generate
more specific hypotheses such as ’cyclic(G):- path(G,X,Y),edge(G,Y,Z).’.

Computing the coverage of an hypothesis requires, in general, running all pos-
itives and negatives examples against the clause. For example, to evaluate if the
example cyclic(g1) is covered by the hypothesis ’cyclic(G):-path(G,X,Y).’,
the system executes the goal once(path(g1,X,Y)). The once/1 predicate is a
primitive that prunes over the search space preventing the unnecessary search for
further answers. It can be defined in Prolog as ’once(Goal):- call(Goal),!.’.

If the same example, cyclic(g1), is later evaluated against the other hy-
pothesis, goal once(path(g1,X,Y),edge(g1,Y,Z)), part of the computation of
path(g1,X,Y)will be repeated. This suggests two approaches to avoid recompu-
tation. First, if the computation of path(g1,X,Y) is computationally expensive,
we can table this query. Second, the subgoal path(g1,X,Y) forms a prefix of the
new clause. We can table prefixes, in the hope that they will be called repeatedly.

Notice that both approaches have problems. The first approach will only work
if the computation for a subgoal is expensive. It will bring no benefit if, say, the
subgoal reduces to a database access. The second approach is only useful if we
repeatedly generate the same prefix. If we have a large number of prefixes which
are only called a few times, we may need large amounts of space to store the
tables, and gain little time-wise. To best implement these approaches requires
some understanding of the basic tabling mechanisms, that we discuss next.

3 Tabling for Inductive Logic Programming

The basic idea behind tabling is straightforward: programs are evaluated by
storing newly found answers for current subgoals in an appropriate data space,
called the table space. The method then uses this table to verify whether calls
to subgoals are repeated. Whenever such a repeated call is found, the subgoal’s
answers are recalled from the table instead of being re-evaluated against the
program clauses. One of the major characteristics of this execution model is that
it reduces the search space by avoiding the recomputation of tabled subgoals.
This is the most significant contribution that tabling can offer to ILP. Moreover,
because tabling based models are also able to avoid infinite loops, they can ensure
termination for a wider class of programs. The latter can be useful when dealing
with datasets with recursive definitions in the background knowledge.

3.1 Tabled Evaluation

Figure 2 uses the example from the background knowledge in Fig. 1 to illus-
trate how tabling works. At the top, the figure shows the program code (the
left box), and the final state of the table space (the right box). Declaration
’:-table path/3.’ indicates that calls to predicate path/3 should be tabled.
The main sub-figure below shows the evaluation sequence for the query goal
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’?- path(g1,b,Z).’. Note that traditional Prolog would immediately enter an
infinite loop because the first clause of path/3 leads to a repeated call to
path(g1,b,Z). In contrast, if tabling is applied then termination is ensured.

Whenever a tabled subgoal is first called, a new entry is added to the table
space. We name these calls generator nodes (nodes depicted by white oval boxes).
In this example, the execution begins with a generator. The first step is to resolve
path(g1,b,Z) against the first clause for path/3, creating node 1. Node 1 is a
variant call to path(g1,b,Z). We do not resolve the subgoal against the program
at these nodes, instead we consume answers from the table. Such nodes are thus
called consumer nodes (nodes depicted by black oval boxes). At this point, the
table does not have answers for this call, and thus, the current evaluation is
suspended. We then backtrack to node 0, thus calling edge(g1,b,Z). The edge/3
predicate is not tabled, hence it must be resolved against the program, as Prolog
would. The first clause for edge/3 fails, but the second succeeds obtaining an
answer for path(g1,b,Z) (step 4).

9. Z= b 19. fail
(Z= a)

20. fail
(Z= b)

13. fail
(Z= a)

12. Z= a 16. fail
(Z= b)

17. fail
(Z= a)

14. fail
(Z= b)

:- table path/3.

path(G,X,Z):- path(G,X,Y),path(G,Y,Z).
path(G,X,Z):- edge(G,X,Z).

edge(g1,a,b).
edge(g1,b,a).

0. path(g1,b,Z)

1. path(g1,b,Y),path(g1,Y,Z) 2. edge(g1,b,Z)

18. path(g1,b,Z) 3. fail5. path(g1,a,Z) 4. Z= a

5. path(g1,a,Z)

6. path(g1,a,Y),path(g1,Y,Z)

15. path(g1,a,Z) 8. Z= b11. path(g1,b,Z) 10. fail

0. path(g1,b,Z)

5. path(g1,a,Z)

4. Z= a

8. Z= b

9. Z= b

Subgoal Answers

12. Z= a

21. complete

21. complete

7. edge(g1,a,Z)

Fig. 2. A tabled evaluation

In the contin-
uation, we back-
track again to node
0, but now it has
no more clauses
left to try. So, we
check whether it
has completed. It
has not, as node
1 has now one un-
consumed answer.
We thus forward
the answer to it,
and path(g1,a,Z)
is then called. As
this is the first call
to path(g1,a,Z),
we add a new en-
try for it in the
table, and proceed
as shown in the
bottommost tree.
Again, path(g1,a,Z) calls itself recursively, suspends at node 6, backtracks,
and succeeds with Z=b (step 8). We then follow a Prolog-like strategy and con-
tinue forward execution. The binding Z=b is thus returned to path(g1,b,Z) and
stored in its table entry (step 9). This will be the last answer to path(g1,b,Z),
but we can only prove so after fully exploiting the tree.

We then fail in step 10, backtrack to node 5, and resume node 6 with an-
swer Z=b. This leads to a new consumer for path(g1,b,Z) (node 11). The table
has two answers for it, so we can continue immediately. This gives new answers
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to path(g1,a,Z) (step 12) and to path(g1,b,Z) (step 13). However, this last
answer repeats what we found in step 4. Tabled resolution do not stores dupli-
cate answers in the table. Instead, repeated answers fail. This is how we avoid
unnecessary computations, and even looping in some cases.

Backtracking sends us back to consumer node 11. We then consume the
second answer for it, which generates a repeated answer, so we fail again (step
14). We then try the second answer for node 6, again leading to a repeated
subgoal (node 15) and two repeated answers (steps 16 and 17). We then fail back
to node 5, but at this point, all answers to the consumers below (nodes 6, 11, and
15) have been tried. However, unfortunately, node 5 cannot complete, because it
depends on subgoal path(g1,b,Z) (node 11). Completing path(g1,a,Z) earlier
is not safe because we can loose answers. Note that, new answers can still be
found for subgoal path(g1,b,Z). If new answers are found, node 11 should be
resumed with the newly found answers, which in turn can lead to new answers
for subgoal path(g1,a,Z). If we complete sooner, we can loose such answers.

Execution thus backtracks and we try the answer left for node 1. Steps 19 to
20 show that again we only get repeated answers. We fail and return to node 0.
All nodes in the trees for node 0 and node 5 have been exploited. As these trees
do not depend on any other tree, we are sure no more answers are forthcoming,
so at last step 21 declares the two trees to be complete.

3.2 Tabling Subgoals and Conjunction of Subgoals

The first application of tabling in ILP is simply to table subgoals. The main
advantage of this approach is that we need to perform minimal changes to the
ILP system. A drawback is that this technique will not help if the subgoal gen-
erates a very small computation, say, if the subgoal is defined extensionally in
the database as Prolog facts. A second approach is to take advantage of the
tabling paradigm and replace the conjunction of predicates in the hypotheses
with proper tabled predicates inferred during execution. Consider, for example,
the following set of hypotheses:

cyclic(G):- edge(G,X,Y), path(G,Y,Z), edge(G,Z,X).
cyclic(G):- edge(G,X,Y), path(G,Y,Z), edge(G,X,Z).
cyclic(G):- edge(G,X,Y), path(G,Y,Z), path(G,Z,X).

Note that the two first subgoals, edge(G,X,Y) and path(G,Y,Z), are common
to all the hypotheses. Thus, if we are able to table the conjunction of both,
we only need to compute it once. This idea can be recursively applied as the
system generates more specific hypothesis. This idea is similar to the query packs
technique proposed by Blockeel et al. [4].

To implement this approach, we designed the following solution. First, we
use a single predicate, t all/2, to table all the conjunctions. The first argu-
ment for t all/2 is an atom that defines the name given to the conjunction.
The second is the set of variables involved. This predicate then calls a t conj/2
predicate (with the same arguments) where the conjunctions are defined. The
clauses for the t conj/2 predicate are dynamically asserted by the ILP sys-
tem as new conjunctions are generated. A conjunction of N subgoals is defined
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as the conjunction of the N − 1 previous subgoals followed by the Nth sub-
goal. For example, we would have the following clauses for the set of hypotheses
above:

% the tabled predicate for all the conjunctions
:- table t_all/2.
t_all(ConjunctionName,VarsList):- t_conj(ConjunctionName,VarsList).

% level 1 conjunctions
t_conj(edge,[V1,V2,V3]):- edge(V1,V2,V3).
t_conj(path,[V1,V2,V3]):- path(V1,V2,V3).

% level 2 conjunctions
t_conj(edge_path,[V1,V2,V3,V4,V5,V6]):- t_all(edge,[V1,V2,V3]),

t_all(path,[V4,V5,V6]).

Finally, we need to transform the clauses for the hypotheses. We thus replace
the conjunctions of subgoals in the hypotheses to calls to the t all/2 predicate.
For example, the previous set of hypotheses will be transformed to:

cyclic(G):- t_all(edge_path,[G,X,Y,G,Y,Z]), t_all(edge,[G,Z,X]).
cyclic(G):- t_all(edge_path,[G,X,Y,G,Y,Z]), t_all(edge,[G,X,Z]).
cyclic(G):- t_all(edge_path,[G,X,Y,G,Y,Z]), t_all(path,[G,Z,X]).

Note that this may cause the same variables to appear at several positions
in the second argument for the t all/2 predicate (e.g., both G and Y appear
twice for edge path). In practice, the tabling engine only stores the answers
once for each different variable, so this only has a small cost. A major problem
with our approach is the amount of memory that is needed to represent the
answers for the different conjunctions. A simple solution is to abolish the full
set of tables from the table space when we run out of memory. An alternative
would be to abolish the tables potentially useless when we backtrack in the hy-
potheses space. This later approach requires further study to avoid incorrect
deletions.

At that point, we should reinforce the differences between tabling and be-
tween the approach of tabling conjunction of subgoals. Tabling is an implemen-
tation technique that comes for free if using a Prolog engine with such support.
The tabling of conjunctions is an alternative evaluation strategy that can be
explored by ILP systems. Like in query packs, this is done automatically in the
innards of the ILP system, and can be parameter controlled. Thus, the final user
of the system only needs to declare the strategy to be used: no tabling, subgoal
tabling, or subgoal and conjunction tabling.

4 Initial Experimental Results

To evaluate the impact of using tabling in real application problems, we ran
the April ILP system [7] with the YapTab Prolog tabling system [8] using two
ILP datasets: mutagenesis and carcinogenesis. April was configured to find hy-
potheses using breadth-first search, and to evaluate hypotheses using a heuristic
that relies on the number of positive and negative examples. YapTab is based on
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the current development version of Yap, version 4.5.7. The environment for our
experiments was an AMD Athlon MP 2600+ processor with 2 GBytes of main
memory and running the Linux kernel 2.6.11.

To evaluate hypotheses we experimented with three different approaches: (i)
without tabling; (ii) subgoals being evaluated using tabling; and (iii) subgoals
and conjunction of subgoals being evaluated using tabling.

Table 1 shows the running times, in seconds, and the table memory usage, in
Mbytes, for the three approaches. We use na to mark the experiments not ran
and mo to mark the runs where a memory overflow occurred. Note that we are
not considering any strategy to avoid memory overflows. The value nodes is the
upper bound on the number of hypotheses, and hypotheses is the number of
hypotheses effectively generated during the search.

Table 1. Running times and table usage with one example as seed

Datasets Running Time (s) Table Usage (Mb)
nodes/hypotheses without subgs conjs subgs conjs
mutagenesis
1,000/981 > 4 hours 94 92 2 6
10,000/6,514 na 162 140 5 205
20,000/14,020 na 169 146 6 281
30,000/20,299 na 197 mo 6 mo
40,000/26,484 na 219 mo 6 mo
50,000/32,852 na 236 mo 6 mo
carcinogenesis
1,000/998 1 1 1 3 11
10,000/9,998 7 9 13 11 259
20,000/19,998 81 91 mo 11 mo
30,000/29,932 121 124 mo 11 mo
40,000/39,932 161 154 mo 11 mo
50,000/49,869 225 209 mo 12 mo

The results obtained for mutagenesis show that tabled evaluation can sig-
nificantly reduce the execution time for these kind of problems. In particular,
for the subgoal approach the gains are quite impressive. The theorem proving
effort involved to evaluate a single example against an hypothesis is quite high
for this dataset. The conjunction approach also achieved the goal of reducing
the execution time (however, we were not able to use more than 20,000 nodes).
Regarding memory usage, the results show an insignificant increase in mem-
ory consumption when tabling subgoals and a more considerable increase when
tabling conjunctions of subgoals.

In the carcinogenesis dataset, the results where not so good. The main reason
for this relies on the type of predicates that compose its background knowledge.
In this dataset most of the predicates are defined extensionally in the database
as Prolog facts, and thus, it is quite difficult for the tabling engine reduce the
execution time. Even so, when we increase the size of the search space for the
carcinogenesis dataset (for more than 40,000 nodes), the tabling subgoal ap-
proach slightly reduces the execution time when compared with the execution



714 R. Rocha, N. Fonseca, and V. Santos Costa

without tabling. Regarding the conjunction approach we were not able to see its
impact in this dataset.

The results obtained suggest that tabling is particular suited for ILP ap-
plications with a background knowledge non-deterministic, as the mutaganesis
dataset. The results also confirm that tabling is not suitable for datasets with
a background knowledge defined extensionally. However, apart the small extra
memory consumption in the case of tabling subgoals, the execution with tabling
do not introduces significant overheads.

5 Conclusions and Further Work

In this work, we proposed the ability of using tabling mechanisms available
in the underlying Logic Programming systems to minimize recomputation in
ILP systems. The results obtained showed that tabling based models are indeed
able to improve the performance of ILP applications. In particular, for some
applications, they show quite impressive gains. As tabled evaluation does not
influences the accuracy and quality of the models found, we believe that our
proposals would apply to several ILP systems.

A major problem with our current implementation, is that we can increase the
table memory usage arbitrarily when tabling conjunction of subgoals. We plan
to study how we can abolish potentially useless tables when we backtrack in the
hypotheses space. We also plan to further investigate the impact of applying our
proposals to a larger set of ILP applications.
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