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Abstract. In this paper, dimensionality reduction via matrix factor-
ization with nonnegativity constraints is studied. Because of these con-
straints, it stands apart from other linear dimensionality reduction meth-
ods. Here we explore nonnegative matrix factorization in combination
with a classifier for protein fold recognition. Since typically matrix fac-
torization is iteratively done, convergence can be slow. To alleviate this
problem, a significantly faster (more than 11 times) algorithm is
proposed.

1 Introduction

It is not uncommon that for certain data sets the number of attributes m is
greater than the number of examples n. In such cases, the effect referred to
as curse of dimensionality occurs, which negatively influences on clustering and
classification of a given data set. Dimensionality reduction is typically used to
mitigate this effect. The simplest way to reduce dimensionality is to linearly
transform the original data. Given the original, high-dimensional data gathered
in an n × m matrix V, a transformed matrix H, composed of m r-dimensional
vectors (r < n and often r � n), is obtained from V according to the following
linear transformation W: V ≈ WH, where W is an n × r (basis) matrix. It is
said that W and H are the factorized matrices and WH is a factorization of V.
PCA and ICA are well-known techniques performing this operation.

Nonnegative matrix factorization (NMF) also belongs to this class of meth-
ods. Unlike the others, it is based on nonnegativity constraints on all matrices
involved. Thanks to this fact, it can generate a part-based representation, since
no subtractions are allowed. Due that, it is claimed that NMF is capable of
decomposing the whole object into meaningful parts, and having such a decom-
position can make object recognition easier and often more accurate.

Lee and Seung [1] proposed a simple iterative algorithm for NMF and proved
its convergence. The factorized matrices are initialized with positive random
numbers before starting matrix updates. It is well known that initialization is of
importance for any iterative algorithm: properly initialized, an algorithm con-
verges faster. However, this issue was not yet investigated in case of NMF. In
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this paper, our contribution is two modifications accelerating algorithm conver-
gence: 1) feature scaling prior to NMF and 2) combination of two techniques for
mapping unseen data with theoretical proof of faster convergence.

Because of its straightforward implementation, NMF has been applied to
pattern classification (faces, handwritten digits, documents) [2, 3, 4]. Here we
extend the application of NMF to bioinformatics: NMF coupled with a classifier
is applied to protein fold recognition. Our results show a dramatic acceleration of
NMF convergence (greater than 11 times on average), compared to the conven-
tional algorithm. Moreover, statistical analysis of the error rates demonstrates
that dimensionality reduction done by NMF prior to the classification in reduced
space does not cause significant accuracy degradations.

2 Nonnegative Matrix Factorization

Given the nonnegative matrices V, W and H whose sizes are n × m, n × r and
r×m, respectively, we aim at such factorization that V ≈ WH. The value of r is
selected according to the rule r < nm

n+m in order to obtain dimensionality reduc-
tion. NMF provides the following simple learning rule guaranteeing monotonical
convergence to a local maximum [1]:

Wia ← Wia

∑

µ

Viµ

(WH)iµ
Haµ , (1)

Wia ← Wia∑
j Wja

, (2)

Haµ ← Haµ

∑

i

Wia
Viµ

(WH)iµ
. (3)

The matrices W and H are initialized with positive random values. Eqs. (1-3)
iterate until convergence to a local maximum of the following objective function:

F =
n∑

i=1

m∑

µ=1

(Viµ log(WH)iµ − (WH)iµ) . (4)

After learning the NMF basis functions, i.e. the matrix W, unseen data in
the matrix Hnew are mapped to r-dimensional space by fixing W and using one
of the following techniques:

1. randomly initializing H and iterating Eq. 3 until convergence,
2. initializing Hnew = (WT W)−1WT Vnew, since Vnew = WHnew, where

Vnew contains the new data.

Further we will call the first technique iterative while the second - direct, because
the latter provides a straightforward non-iterative solution.
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3 Our Contribution

We propose two modifications in order to accelerate convergence of the iterative
NMF algorithm.

The first modification concerns feature scaling (normalization) linked to the
initialization of the factorized matrices. Typically, these matrices are initialized
with positive random numbers, say uniformly distributed between 0 and 1, in
order to satisfy the nonnegativity constraints. Hence, elements of V (matrix of
the original data) also need to be within the same range. Given that Vj is an
n-dimensional feature vector, where j = 1, . . . , m, its components Vij are nor-
malized as follows: Vij/Vkj , where k = argmaxl Vlj . In other words, components
of each feature vector are divided by the maximal value among them. As a re-
sult, feature vectors are composed of components whose nonnegative values do
not exceed 1. Since all three matrices (V, W, H) have now entries between 0
and 1, it takes much less time to perform matrix factorization V ≈ WH (values
of the entries in the factorized matrices do not have to grow/decrease much in
magnitude in order to satisfy the stopping criterion for the objective function
F in Eq. 4) than if V had the original (unnormalized) values. Given that the
same iterative algorithm is used in both cases (unnormalized and normalized
features), it takes less time to change from 0.5 to 0.7 (normalized feature) than
to change from 0.5 to 10 (unnormalized feature), because on each step the con-
vergence rate is the same. As additional benefit, MSE becomes much smaller,
too, because a difference of the original (Vij) and approximated ((WH)ij) values
becomes smaller, given that mn is fixed. Though this modification is simple, it
brings significant speed of convergence as will be shown below.

The second modification concerns initialization of NMF iterations for map-
ping unseen data (aka generalization), i.e. after the basis matrix W has been
learned. Since such a mapping in NMF involves only the matrix H (W is
kept fixed), its initialization is to be done. We propose to initially set H to
(WT W)−1WT Vnew , i.e. to the solution provided by the direct mapping tech-
nique with zeroing negative values as in Section 2, because 1) it provides a better
initial approximation for Hnew than a random guess, and 2) it moves the start
of iterations closer toward the final point, since the objective function F in Eq. 4
is increasing [1], and the inequality F direct > F iter always holds at initialization
(theorem below proves this fact), where F direct and F iter stand for the values
of F when using the direct and iterative techniques, respectively.

Theorem 1. Given F direct and F iter are values of the objective function when
mapping unseen data with the direct and iterative techniques, respectively. Then
F direct − F iter > 0 always holds at the start of iterations when using Eq. 3.

Proof. By definition,

F iter =
n∑

i=1

m∑

j=1

(Vij log(WH)ij − (WH)ij) ,
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F direct =
n∑

i=1

m∑

j=1

(Vij log Vij − Vij) .

The difference F direct − F iter is equal to

n∑

i=1

m∑

j=1

(Vij log Vij − Vij − Vij log(WH)ij + (WH)ij) =

n∑

i=1

m∑

j=1

(
Vij(log

Vij

(WH)ij
− 1) + (WH)ij

)
=

n∑

i=1

m∑

j=1

(
Vij log

Vij

10(WH)ij
+ (WH)ij

)
.

Given all three matrices involved are nonnegative, the last expression is pos-
itive if either condition is satisfied:

1. log Vij

10(WH)ij
> 0,

2. (WH)ij > Vij log 10(WH)ij

Vij
.

Let us introduce a new variable, t: t = Vij

(WH)ij
. Then the above conditions can

be written as

1. log t
10 > 0 or logt > 1,

2. 1 > t log t
10 or log t < t+1

t .

The first condition is satisfied if t > 10 whereas the second if t < t0 (t0 ≈ 12).
Therefore either t > 10 or t < 12 should be satisfied for F direct > F iter . Since
the union of both conditions covers the whole interval [0, +∞[, it means that
F direct > F iter, independently of t, i.e. of whether Vij > (WH)ij or not. Q.E.D.

��

Because our approach combines both direct and iterative techniques for mapping
unseen data, we will call it iterative2.

4 Summary of Our Algorithm

1. Scale both training and test data and randomly initialize the factorized ma-
trices as described in Section 3. Choose r.

2. Iterate Eqs. 1-3 until convergence to obtain the NMF basis matrix W and
to map training data to NMF (reduced) space.

3. Given W, map test data by using the direct technique. Set to zero negative
values in the resulting matrix Hdirect

new .
4. Fix the basis matrix and iterate Eq. 3 until convergence by using Hdirect

new at
initialization of iterations.
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5 Experiments

Experiments with NMF involve estimation of the error rate when combining
NMF and a classifier. Three techniques for generalization are used: direct, itera-
tive, and iterative2. The training data are mapped into reduced space according
to Eqs. 1-3 with simultaneous learning of the matrix W. Tests were repeated
10 times to collect statistics necessary for comparison of three generalization
techniques. Each time, a different random initialization for learning the basis
matrix W was used, but the same learned basis matrix was utilized in each run
for all generalization techniques in order to create as fair comparison of three
generalization techniques as possible.

Values of r (dimensionality of reduced space) were set to 25, 50, 75, and 88
(max), which constitutes 20%, 40%, 60%, and 71.2% of the original dimension-
ality, respectively. In all reported statistical tests α = 0.05. All algorithms were
implemented in MATLAB running on a Pentium 4 (3 GHz CPU, 1GB RAM).

5.1 Data

In bioinformatics, it is rather common to use a single data set in experiments,
since many tasks in this field are much more difficult than those in general
machine learning. A challenging data set [5] was used in experiments. The data
set contains the 27 most populated folds represented by seven or more proteins.
Ding and Dubchak already split it into the training and test sets, which we will
use as other authors did. Feature vectors have 125 dimensions. The training set
consists of 313 protein folds having no more than 35% of the sequence identity
for aligned subsequences longer than 80 residues. The test set of 385 folds is
composed of protein sequences of less than 40% identity with each other and
less than 35% identity with the proteins of the first set. This, as well as multiple
classes, many of which sparsely represented, render this task extremely difficult.

5.2 Classification Results

The K-Local Hyperplane Distance Nearest Neighbor (HKNN) [6] was selected
as a classifier, since it demonstrated a competitive performance. Table 1 shows
the error rates obtained with HKNN, SVM, and various neural networks when
classifying protein folds in the original, 125-dimensional space.

The normalized features were used since feature normalization prior to
HKNN increases classification accuracy. The optimal values for two parameters
of HKNN, K and λ, determined via cross-validation, are 7 and 8, respectively.

Let us now turn to the error rates in dimensionally reduced space. For each
value of r, NMF followed by HKNN were repeated 10 times. As a results, a 40x6
matrix containing the error rates was generated. This matrix is then subjected
to the one-way analysis of variance (ANOVA) and multiple comparison tests
in order to make statistically driven conclusions. Table 5.2 shows identifiers
associated with the generalization techniques. Error bars for all generalization
techniques are given in Fig. 1.
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Fig. 1. (a) Error bars resulting from NMF using six generalization techniques; (b)
Classification errors on the original space of the protein folds dataset

The one-way ANOVA test is first utilized in order to find out whether the
mean error rates of all six techniques are the same (null hypothesis H0 : µ1 =
µ2 = · · · = µ6) or not. If the returned p-value is smaller than α = 0.05, the null
hypothesis is rejected, which implies that the mean error rates are not the same.
The next step is to determine which pairs of means are significantly different,
and which are not by means of the multiple comparison test.

Table 5.2 contains results of the multiple comparison test and it is seen
that these results confirm that the direct technique stands apart from both
iterative techniques. The main conclusions from Table 5.2 are µ1 = µ4 and
µ2 = µ3 = µ5 = µ6, i.e. there are two groups of techniques, and the mean of the
first group is larger than that of the second group.

The last column in Table 5.2 points to the very interesting result: whether
feature normalization prior to NMF is applied or not, the standard deviation
of the error rate of our technique is lower than that for the conventional one,
which, in turn, is lower than the standard deviation for the direct technique. It
implies that our modifications of NMF led to a visible reduction in the deviation
of classification error ! This reduction is caused by shrinking the search space of
possible factorizations, and it is larger if normalization prior to NMF is used.

Table 1. Mean error for each generalization technique (standard error 0.4)

Identifier Technique Scaling prior to NMF Mean error Std. deviation
1 Direct No 50.93 3.08
2 Iterative No 44.94 2.52
3 Iterative2 No 45.98 2.11
4 Direct Yes 51.38 3.31
5 Iterative Yes 44.52 2.13
6 Iterative2 Yes 46.32 1.72
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Table 2. Results of the multiple comparison test

Identifier Identifier 2 Lower bound Difference Upper bound Outcome
4 5 5.25 6.87 8.48 Reject H0 : µ4 �= µ5

4 2 4.83 6.45 8.07 Reject H0 : µ4 �= µ2

4 3 3.79 5.41 7.03 Reject H0 : µ4 �= µ3

4 6 3.45 5.07 6.69 Reject H0 : µ4 �= µ6

4 1 -1.16 0.46 2.07 Accept H0 : µ4 = µ1

1 5 4.79 6.41 8.03 Reject H0 : µ1 �= µ5

1 2 4.38 5.99 7.61 Reject H0 : µ1 �= µ2

1 3 3.34 4.96 6.57 Reject H0 : µ1 �= µ3

1 6 3.00 4.61 6.23 Reject H0 : µ1 �= µ6

6 5 0.18 1.80 3.42 Reject H0 : µ6 �= µ5

6 2 -0.24 1.38 3.00 Accept H0 : µ6 = µ2

3 5 -0.16 1.46 3.07 Accept H0 : µ3 = µ5

Table 3. Gains in time resulted from modifications of the conventional NMF algorithm

Gain due to scaling prior to NMF for Gain due to initialization for
learning generalization learning+generalization generalization

r R1 R2 R3 R4 R5 R6 R7

88 11.9 11.4 10.4 11.7 11.5 1.5 1.4
75 13.8 12.9 13.1 13.6 13.7 1.6 1.6
50 13.2 11.1 12.5 12.6 13.1 1.6 1.7
25 9.5 6.4 8.8 8.7 9.5 1.6 2.2
Average 12.1 10.4 11.2 11.6 11.9 1.6 1.8

That is, our initialization eliminates some potentially erroneous solutions before
iterations even start and leads to more stable classification error.

One can say that the error rates in reduced space are larger than the error rate
(42.7%) achieved in the original space. However, it is not, in general, uncommon
to observe similar effects when doing classification after dimensionality reduc-
tion (see, e.g. [7]). Nevertheless, we observed that sometimes error in reduced
space can be lower than 42.7: for example, the minimal error when applying the
iterative technique with no scaling before NMF and r = 50 is 39.22, while the
minimal error when using the iterative2 technique under the same conditions is
42.34. Varying errors can be attributed to the fact that NMF factorization of a
given matrix may not be unique. Finally, even though NMF+HKNN led to the
higher error rates than HKNN alone, the former was nevertheless superior (see
Tables 1 and 5.2) to neural networks and comparable to SVMs, applied without
NMF.

5.3 Time Results

Table 3 presents speed gains resulted from our modifications for different di-
mensionalities of reduced space. R1 stands for the speed gains due to scaling on
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the task of learning and mapping training data. R2 and R3 are the speed gains
obtained due to scalling on the generalization task using iterative and iterative2.
R4 and R5 are the same gains obtained on the task of training followed by gen-
eralization. R6 and R7 are the speed gains obtained due to applying iterative2
instead of iterative versus scaling. As a result, the average gain in time obtained
with our modifications is more than 11 times.

6 Conclusion

The main contribution of this work is two modifications of the basic NMF al-
gorithm and its practical application to a challenging real-world task, namely
protein fold recognition. The first modification concerns feature scaling before
NMF while the second modification combines two known generalization tech-
niques, which we called direct and iterative; the former is used as a starting
point for updates of the latter, thus leading to a new generalization technique.
We proved (both theoretically and experimentally) that our technique converges
faster than the ordinary iterative technique. On the data set studied, the average
gain in convergence speed exceeds 11 times.

When combining the modified NMF with a classification algorithm, statistical
analysis of the obtained results indicates that the mean error associated with the
direct technique is higher than that related to either iterative technique while
both iterative techniques lead to the statistically similar error rates. Since our
technique provides a faster mapping of unseen data, it is advantageous to apply
it instead of the ordinary one. In addition, our technique results in a smaller
deviation of classification error, thus making classification more stable.
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