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Abstract. This paper investigates a novel model-free reinforcement
learning architecture, the Natural Actor-Critic. The actor updates are
based on stochastic policy gradients employing Amari’s natural gradient
approach, while the critic obtains both the natural policy gradient and
additional parameters of a value function simultaneously by linear regres-
sion. We show that actor improvements with natural policy gradients are
particularly appealing as these are independent of coordinate frame of
the chosen policy representation, and can be estimated more efficiently
than regular policy gradients. The critic makes use of a special basis
function parameterization motivated by the policy-gradient compatible
function approximation. We show that several well-known reinforcement
learning methods such as the original Actor-Critic and Bradtke’s Linear
Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Em-
pirical evaluations illustrate the effectiveness of our techniques in com-
parison to previous methods, and also demonstrate their applicability for
learning control on an anthropomorphic robot arm.

1 Introduction

Reinforcement learning algorithms based on value function approximation have
been highly successful with discrete lookup table parameterization. However,
when applied with continuous function approximation, many of these algorithms
failed to generalize, and few convergence guarantees could be obtained [14]. The
reason for this problem can largely be traced back to the greedy or ε-greedy
policy updates of most techniques, as it does not ensure a policy improvement
when applied with an approximate value function [6]. During a greedy update,
small errors in the value function can cause large changes in the policy which
in return can cause large changes in the value function. This process, when
applied repeatedly, can result in oscillations or divergence of the algorithms.
Even in simple toy systems, such unfortunate behavior can be found in many
well-known greedy reinforcement learning algorithms [4,6].

As an alternative to greedy reinforcement learning, policy gradient methods
have been suggested. Policy gradients have rather strong convergence guarantees,
even when used in conjunction with approximate value functions, and recent
results created a theoretically solid framework for policy gradient estimation
from sampled data [15,11]. However, even when applied to simple examples with
rather few states, policy gradient methods often turn out to be quite inefficient
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Fig. 1. When plotting the expected return landscape for simple problem as 1d linear
quadratic regulation, the differences between ‘vanilla’ and natural policy gradients
becomes apparent [13]

[10], partially caused by the large plateaus in the expected return landscape
where the gradients are small and often do not point directly towards the optimal
solution. A simple example that demonstrates this behavior is given in Fig. 1.

Similar as in supervised learning, the steepest ascent with respect to the
Fisher information metric [1], called the ‘natural’ policy gradient, turns out to
be significantly more efficient than normal gradients. Such an approach was first
suggested for reinforcement learning as the ‘average natural policy gradient’
in [10], and subsequently shown in preliminary work to be the true natural
policy gradient [13,2]. In this paper, we take this line of reasoning one step
further in Section 2.2 by introducing the “Natural Actor-Critic” which inherits
the convergence guarantees from gradient methods. Furthermore, in Section 3,
we show that several successful previous reinforcement learning methods can
be seen as special cases of this more general architecture. The paper concludes
with empirical evaluations that demonstrate the effectiveness of the suggested
methods in Section 4.

2 Natural Actor-Critic

2.1 Markov Decision Process Notation and Assumptions

For this paper, we assume that the underlying control problem is a Markov
Decision Process (MDP) in discrete time with continuous state set X = R

n, and
a continuous action set U = R

m [6]. The system is at an initial state x0 ∈ X at
time t = 0 drawn from the start-state distribution p(x0). At any state xt ∈ X at
time t, the actor will choose an action ut ∈ U by drawing it from a stochastic,
parameterized policy π(ut|xt) = p(ut|xt, θ) with parameters θ ∈ R

N , and the
system transfers to a new state xt+1 drawn from the state transfer distribution
p(xt+1|xt, ut). The system yields a scalar reward rt = r(xt, ut) ∈ R after each
action. We assume that the policy πθ is continuously differentiable with respect
to its parameters θ, and for each considered policy πθ, a state-value function
V π(x), and the state-action value function Qπ (x, u) exist and are given by

V π(x)= Eτ

{∑∞
t=0γ

trt

∣
∣x0 = x

}
, Qπ (x, u) = Eτ

{∑∞
t=0γ

trt

∣
∣ x0 = x, u0 = u

}
,
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where γ ∈ [0, 1[ denotes the discount factor, and τ a trajectory. It is assumed
that some basis functions φ(x) are given so that the state-value function can be
approximated with linear function approximation V π(x) = φ(x)T v. The general
goal is to optimize the normalized expected return

J(θ) = Eτ

{
(1 − γ)

∑∞
t=0γ

trt

∣∣θ
}

=
∫

X
dπ(x)

∫
U
π(u|x)r(x, u)dxdu

where dπ(x) = (1 − γ)
∑∞

t=0 γtp(xt = x) is the discounted state distribution.

2.2 Actor Improvements with Natural Policy Gradients

Actor-Critic and many other policy iteration architectures consist of two steps,
a policy evaluation step and a policy improvement step. The main requirements
for the policy evaluation step are that it makes efficient usage of experienced
data. The policy improvement step is required to improve the policy on every
step until convergence while being efficient.

The requirements on the policy improvement step rule out greedy methods
as, at the current state of knowledge, a policy improvement for approximated
value functions cannot be guaranteed, even on average. ‘Vanilla’ policy gradi-
ent improvements (see e.g., [15,11]) which follow the gradient ∇θJ(θ) of the
expected return function J(θ) often get stuck in plateaus as demonstrated in
[10]. Natural gradients ∇̃θJ(θ) avoid this pitfall as demonstrated for supervised
learning problems [1], and suggested for reinforcement learning in [10]. These
methods do not follow the steepest direction in parameter space but the steep-
est direction with respect to the Fisher metric given by

∇̃θJ(θ) = G−1(θ)∇θJ(θ), (1)

where G(θ) denotes the Fisher information matrix. It is guaranteed that the
angle between natural and ordinary gradient is never larger than ninety degrees,
i.e., convergence to the next local optimum can be assured. The ‘vanilla’ gradient
is given by the policy gradient theorem (see e.g., [15,11]),

∇θJ(θ) =
∫

X
dπ(x)

∫
U
∇θπ(u|x) (Qπ(x, u) − bπ(x)) dudx, (2)

where bπ(x) denotes a baseline. [15] and [11] demonstrated that in Eq. (2), the
term Qπ(x, u) − bπ(x) can be replaced by a compatible function approximation

fπ
w(x, u) = (∇θ log π(u|x))T w ≡ Qπ(x, u) − bπ(x), (3)

parameterized by the vector w, without affecting the unbiasedness of the gra-
dient estimate and irrespective of the choice of the baseline bπ(x). However, as
mentioned in [15], the baseline may still be useful in order to reduce the variance
of the gradient estimate when Eq.(2) is approximated from samples. Based on
Eqs.(2, 3), we derive an estimate of the policy gradient as

∇θJ(θ) =
∫

X
dπ(x)

∫
U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)T dudx w = Fθw. (4)
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as ∇θπ(u|x) = π(u|x)∇θ log π(u|x). Since π(u|x) is chosen by the user, even in
sampled data, the integral F (θ, x) =

∫
U

π(u|x)∇θ log π(u|x)∇θ log π(u|x)T du
can be evaluated analytically or empirically without actually executing all ac-
tions. It is also noteworthy that the baseline does not appear in Eq. (4) as it
integrates out, thus eliminating the need to find an optimal selection of this
open parameter. Nevertheless, the estimation of Fθ =

∫
X

dπ(x)F (θ, x)dx is still
expensive since dπ(x) ist not known. However, Equation (4) has more surprising
implications for policy gradients, when examining the meaning of the matrix Fθ

in Eq.(4). Kakade [10] argued that F (θ, x) is the point Fisher information matrix
for state x, and that F (θ) =

∫
X
dπ(x) F (θ, x)dx, therefore, denotes a weighted

‘average Fisher information matrix’[10]. However, going one step further, we
demonstrate in Appendix A that Fθ is indeed the true Fisher information ma-
trix and does not have to be interpreted as the ‘average’ of the point Fisher
information matrices. Eqs.(4) and (1) combined imply that the natural gradient
can be computed as

∇̃θJ(θ) = G−1(θ)Fθw = w, (5)

since Fθ = G(θ) (c.f. Appendix A). Therefore we only need estimate w and
not G(θ). The resulting policy improvement step is thus θi+1 = θi + αw where
α denotes a learning rate. Several properties of the natural policy gradient are
worthwhile highlighting:

– Convergence to a local minimum guaranteed as for ‘vanilla gradients’. [1]
– By choosing a more direct path to the optimal solution in parameter space,

the natural gradient has, from empirical observations, faster convergence and
avoids premature convergence of ‘vanilla gradients’ (cf. Figure 1).

– The natural policy gradient can be shown to be covariant, i.e., independent
of the coordinate frame chosen for expressing the policy parameters (cf.
Section 3.1).

– As the natural gradient analytically averages out the influence of the stochas-
tic policy (including the baseline of the function approximator), it requires
fewer data point for a good gradient estimate than ‘vanilla gradients’.

2.3 Critic Estimation with Compatible Policy Evaluation

The critic evaluates the current policy π in order to provide the basis for an
actor improvement, i.e., the change ∆θ of the policy parameters. As we are
interested in natural policy gradient updates ∆θ = αw, we wish to employ
the compatible function approximation fπ

w(x, u) from Eq.(3) in this context.
At this point, a most important observation is that the compatible function
approximation fπ

w(x, u) is mean-zero w.r.t. the action distribution, i.e.,
∫

U
π(u|x)fπ

w(x, u)du = wT
∫

U
∇θπ(u|x)du = 0, (6)

since from
∫

U
π(u|x)du = 1, differention w.r.t. to θ results in

∫
U
∇θπ(u|x)du =

0. Thus, fπ
w(x, u) represents an advantage function Aπ(x, u) = Qπ(x, u)−V π(x)

in general. The advantage function cannot be learned with TD-like bootstrapping
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without knowledge of the value function as the essence of TD is to compare the
value V π(x) of the two adjacent states – but this value has been subtracted out
in Aπ(x, u). Hence, a TD-like bootstrapping using exclusively the compatible
function approximator is impossible.

As an alternative, [15,11] suggested to approximate fπ
w(x, u) from unbiased

estimates Q̂π(x, u) of the action value function, e.g., obtained from roll-outs
and using least-squares minimization between fw and Q̂π. While possible in
theory, one needs to realize that this approach implies a function approximation
problem where the parameterization of the function approximator only spans
a much smaller subspace of the training data – e.g., imagine approximating a
quadratic function with a line. In practice, the results of such an approximation
depends crucially on the training data distribution and has thus unacceptably
high variance – e.g., fit a line to only data from the right branch of a parabula,
the left branch, or data from both branches.

To remedy this situation, we observe that we can write the Bellman equations
(e.g., see [3]) in terms of the advantage function and the state-value function

Qπ(x, u) = Aπ(x, u) + V π(x) = r (x, u) + γ
∫

X
p(x′|x, u)V π(x′)dx′. (7)

Inserting Aπ(x, u) = fπ
w(x, u) and an appropriate basis functions representation

of the value function as V π(x) = φ(x)T v, we can rewrite the Bellman Equation,
Eq., (7), as a set of linear equations

∇θ log π(ut|xt)T w + φ(xt)T v = r(xt, ut) + γφ(xt+1)T v + ε(xt, ut, xt+1) (8)

where ε(xt, ut, xt+1) denotes an error term which mean-zero as can be observed
from Eq.(7). These equations enable us to formulate some novel algorithms in
the next sections.

Critic Evaluation with LSTD-Q(λ). Using Eq.(8), a solution to Equation
(7) can be obtained by adapting the LSTD(λ) policy evaluation algorithm [7].

Table 1. Natural Actor-Critic Algorithm with LSTD-Q(λ)

Input: Parameterized policy π(u|x) = p(u|x, θ) with initial parameters θ = θ0, its
derivative ∇θ logπ(u|x) and basis functions φ(x) for the value function V π(x).
1: Draw initial state x0 ∼ p(x0), and select parameters At+1 = 0, bt+1 = zt+1 = 0.
2: For t = 0, 1, 2, . . . do
3: Execute: Draw action ut ∼ π(ut|xt), observe next state xt+1∼ p(xt+1|xt, ut),

and reward rt= r(xt, ut).
4: Critic Evaluation (LSTD-Q(λ)): Update
4.1: basis functions: �φt = [φ(xt+1)T , 0T ]

T
, �φt = [φ(xt)T , ∇θ log π(ut|xt)T ]

T
,

4.2: statistics: zt+1 = λzt+�φt; At+1 = At + zt+1(�φt − γ�φt)T ; bt+1 = bt + zt+1rt,

4.3: critic parameters: [wT
t+1, v

T
t+1]

T = A−1
t+1bt+1.

5: Actor: When the natural gradient is converged,�(wt+1, wt−τ ) ≤ ε, update
5.1: policy parameters: θt+1 = θt + αwt+1,
5.2: forget statistics: zt+1 ← βzt+1, At+1 ← βAt+1, bt+1 ← βbt+1.
6: end.
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For this purpose, we define

φ̂t = [φ(xt)T , ∇θ log π(ut|xt)T ]T , φ̃t = [φ(xt+1)T ,0T ]T , (9)

as new basis functions, where 0 is the zero vector. This definition of basis function
reduces bias and variance of the learning process in comparison to SARSA and
previous LSTD(λ) algorithms for state-action value functions [7] as the basis
functions φ̃t do not depend on stochastic future actions ut+1, i.e., the input
variables to the LSTD regression are not noisy due to ut+1 (e.g., as in [8]) –
such input noise would violate the standard regression model that only takes
noise in the regression targets into account. LSTD(λ) with the basis functions
in Eq.(9), called LSTD-Q(λ) from now on, is thus currently the theoretically
cleanest way of applying LSTD to state-value function estimation. It is exact for
deterministic or weekly noisy state transitions and arbitrary stochastic policies.
As all previous LSTD suggestions, it loses accuracy with increasing noise in the
state transitions since φ̃t becomes a random variable. The complete LSTD-Q(λ)
algorithm is given in the Critic Evaluation (lines 4.1-4.3) of Table 1.

Once LSTD-Q(λ) converges to an approximation of Aπ(xt, ut)+V π(xt), we
obtain two results: the value function parameters v, and the natural gradient
w. The natural gradient w serves in updating the policy parameters ∆θt =
αwt. After this update, the critic has to forget at least parts of its accumulated
sufficient statistics using a forgetting factor β ∈ [0, 1] (cf. Table 1). For β = 0,
i.e., complete resetting, and appropriate basis functions φ(x), convergence to
the true natural gradient can be guaranteed. The complete Natural Actor Critic
(NAC) algorithm is shown in Table 1.

However, it becomes fairly obvious that the basis functions can have an in-
fluence on our gradient estimate. When using the counterexample in [5] with
a typical Gibbs policy, we will realize that the gradient is affected for λ < 1;
for λ = 0 the gradient is flipped and would always worsen the policy. However,
unlike in [5], we at least could guarantee that we are not affected for λ = 1.

Episodic Natural Actor-Critic. Given the problem that the additional basis
functions φ(x) determine the quality of the gradient, we need methods which
guarantee the unbiasedness of the natural gradient estimate. Such method can
be determined by summing up Equation (8) along a sample path, we obtain

∑N−1
t=0 γtAπ(xt, ut) = V π(x0) +

∑N−1
t=0 γtr(xt, ut) − γNV π(xN ) (10)

It is fairly obvious that the last term disappears for N → ∞ or episodic tasks
(where r(xN−1, uN−1) is the final reward); therefore each roll-out would yield
one equation. If we furthermore assume a single start-state, an additional scalar
value function of φ(x) = 1 suffices. We therefore get a straightforward regression
problem: ∑N−1

t=0 γt∇ log π(ut, xt)T w + J =
∑N−1

t=0 γtr(xt, ut) (11)

with exactly dim θ + 1 unknowns. This means that for non-stochastic tasks we
can obtain a gradient after dim θ + 1 rollouts. The complete algorithm is shown
in Table 2.
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Table 2. Episodic Natural Actor-Critic Algorithm (eNAC)

Input: Parameterized policy π(u|x) = p(u|x, θ) with initial parameters θ = θ0,
its derivative ∇θ logπ(u|x).
For u = 1, 2, 3, . . . do

For e = 1, 2, 3, . . . do
Execute Rollout: Draw initial state x0 ∼ p(x0).
For t = 1, 2, 3, . . . , N do
Draw action ut ∼ π(ut|xt), observe next state xt+1∼ p(xt+1|xt, ut),
and reward rt= r(xt, ut).

end.
end.
Critic Evaluation (Episodic): Determine value function
J = V π(x0), compatible function approximation fπ

w (xt, ut).

Update: Determine basis functions: φt =
��N

t=0 γt∇θ log π(ut|xt)T , 1
�T

;

reward statistics: Rt =
�N

t=0 γtr;
Actor-Update: When the natural gradient is converged,
�(wt+1, wt−τ ) ≤ ε, update the policy parameters: θt+1 = θt + αwt+1.

6: end.

3 Properties of Natural Actor -Critic

In this section, we will emphasize certain properties of the natural actor-critic.
In particular, we want to give a simple proof of covariance of the natural pol-
icy gradient, and discuss [10] observation that in his experimental settings the
natural policy gradient was non-covariant. Furthermore, we will discuss another
surprising aspect about the Natural Actor-Critic (NAC) which is its relation to
previous algorithms. We briefly demonstrate that established algorithms like the
classic Actor-Critic [14], and Bradtke’s Q-Learning [8] can be seen as special
cases of NAC.

3.1 On the Covariance of Natural Policy Gradients

When [10] originally suggested natural policy gradients, he came to the disap-
pointing conclusion that they were not covariant. As counterexample, he sug-
gested that for two different linear Gaussian policies, (one in the normal form,
and the other in the information form) the probability distributions represented
by the natural policy gradient would be affected differently, i.e., the natural pol-
icy gradient would be non-covariant. We intend to give a proof at this point
showing that the natural policy gradient is in fact covariant under certain con-
ditions, and clarify why [10] experienced these difficulties.

Theorem 1. Natural policy gradients updates are covariant for two policies
πθ parameterized by θ and πh parameterized by h if (i) for all parameters
θi there exists a function θi = fi(h1, . . . , hk), (ii) the derivative ∇hθ and its
inverse ∇hθ−1.
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For the proof see Appendix B. Practical experiments show that the problems
occurred for Gaussian policies in [10] are in fact due to the selection the stepsize
α which determines the length of ∆θ. As the linearization ∆θ = ∇hθT ∆h does
not hold for large ∆θ, this can cause divergence between the algorithms even
for analytically determined natural policy gradients which can partially explain
the difficulties occurred by Kakade [10].

3.2 NAC’s Relation to Previous Algorithms

Original Actor-Critic. Surprisingly, the original Actor-Critic algorithm [14]
is a form of the Natural Actor-Critic. By choosing a Gibbs policy π(ut|xt) =
exp(θxu)/

∑
b exp(θxb), with all parameters θxu lumped in the vector θ, (de-

noted as θ = [θxu]) in a discrete setup with tabular representations of transition
probabilities and rewards. A linear function approximation V π(x) = φ(x)T v
with v = [vx] and unit basis functions φ(x) = ux was employed. Sutton et al.
online update rule is given by

θt+1
xu = θt

xu + α1 (r(x, u) + γvx′ − vx) , vt+1
x = vt

x + α2 (r(x, u) + γvx′ − vx) ,

where α1, α2 denote learning rates. The update of the critic parameters vt
x equals

the one of the Natural Actor-Critic in expectation as TD(0) critics converges to
the same values as LSTD(0) and LSTD-Q(0) for discrete problems [7]. Since for
the Gibbs policy we have ∂ log π(b|a)/∂θxu = 1 − π(b|a) if a = x and b = u,
∂ log π(b|a)/∂θxu = −π(b|a) if a = x and b �= u, and ∂ log π(b|a)/∂θxu = 0
otherwise, and as

∑
b π(b|x)A(x, b) = 0, we can evaluate the advantage function

and derive

A(x, u) = A(x, u) −
∑

b
π(b|x)A(x, b) =

∑

b

∂ log π(b|x)
∂θxu

A(x, b).

Since the compatible function approximation represents the advantage function,
i.e., fπ

w(x, u) = A(x, u), we realize that the advantages equal the natural gradi-
ent, i.e., w = [A(x, u)]. Furthermore, the TD(0) error of a state-action pair (x, u)
equals the advantage function in expectation, and therefore the natural gradient
updatewxu = A(x, u) = Ex′{r(x, u) + γV (x′) − V (x)|x, u}, corresponds to the
average online updates of Actor-Critic. As both update rules of the Actor-Critic
correspond to the ones of NAC, we can see both algorithms as equivalent.

Bradtke’s Q-Learning. Bradtke [8] proposed an algorithm with policyπ(ut|xt)
= N (ut|kT

i xt, σ
2
i ) and parameters θi = [kT

i , σi]T (where σi denotes the explo-
ration, and i the policy update time step) in a linear control task with linear state
transitions xt+1 = Axt +but, and quadratic rewards r(xt, ut) = xT

t Hxt +Ru2
t .

They evaluated Qπ(xt, ut) with LSTD(0) using a quadratic polynomial expan-
sion as basis functions, and applied greedy updates:

kBradtke
i+1 = argmaxki+1

Qπ(xt, ut = kT
i+1xt) = −(R + γbT P ib)−1γbP iA, (12)

where P i denotes policy-specific value function parameters related to the gain ki;
no update the exploration σi was included. Similarly, we can obtain the natural
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policy gradient w = [wk, wσ]T , as yielded by LSTD-Q(λ) analytically using the
compatible function approximation and the same quadratic basis functions. As
discussed in detail in [13], this gives us

wk = (γAT P ib + (R + γbT P ib)k)T σ2
i , wσ = 0.5(R + γbT P ib)σ3

i . (13)

Similarly, it can be derived that the expected return is J(θi) = −(R+γbT P ib)σ2
i

for this type of problems, see [13]. For a learning rate αi = 1/ ‖J(θi)‖, we see

ki+1 = ki + αtwk = ki − (ki + (R + γbT P ib)−1γAT P ib) = kBradtke
i+1 ,

which demonstrates that Bradtke’s Actor Update is a special case of the Natural
Actor-Critic. NAC extends Bradtke’s result as it gives an update rule for the
exploration – which was not possible in Bradtke’s greedy framework.

4 Evaluations and Applications

In this section, we present several evaluations comparing the episodic Natural
Actor-Critic architectures with previous algorithms. We compare them in opti-
mization tasks such as cart-pole ba cing and simple motor primitive evalua-
tions and compare them only with
combination of episodic NAC and t
task on a real robot, i.e., ‘hitting a

4.1 Cart-Pole Balancing

Cartpole balancing is a well-known
assume the cart as shown in Figure

mlẍ cos θ + ml2θ̈ − mgl sin θ = 0,

with l = 0.75m, m = 0.15kg, g = 9.8
is given by x = [x, ẋ, θ, θ̇]T , and th

Fig. 2. This figure shows two compariso
ing. The physical set-up of a cart-pole
performance of GPOMDP, the project
Actor-Critic in comparison. The latter
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if it was sampled at a rate of h = 60Hz, and the reward is given by r(x, u) =
xT Qx + uT Ru with Q = diag(1.25, 1, 12, 0.25), R = 0.01. We chose a linear
Gaussian policy given by π(u|x) = N (u|kT x, 1/(1+exp(−ξ))), with parameters
θT = [kT , ξ]. While this can also be treated with LSTD-Q(λ), see [13], we will
focus on comparing it with GPOMDP and the projection suggested in [11], and
in [10]. The results can be seen in Figure 2 (1.b) which makes clear that episodic
natural actor-critic clearly outperforms both other methods.

4.2 Motor Primitive Learning for Baseball

This section will turn towards optimizing nonlinear dynamic motor primitives
for robotics. In [9], a novel form of representing movement plans (qd, q̇d) for the
degrees of freedom (DOF) robot systems was suggested in terms of the time
evolution of the nonlinear dynamical systems

q̇d,k = h(qd,k, zk, gk, τ, θk) (14)

where (qd,k, q̇d,k) denote the desired position and velocity of a joint, zk the in-
ternal state of the dynamic system, gk the goal (or point attractor) state of each
DOF, τ the movement duration shared by all DOFs, and θk the open parameters
of the function h. The original work in[9] demonstrated how the parameters θk

can be learned to match a template trajectory by means of supervised learning
– this scenario is, for instance, useful as the first step of an imitation learning
system. Here we will add the ability of self-improvement of the movement prim-
itives in Eq.(14) by means of reinforcement learning, which is the crucial second
step in imitation learning. The system in Eq.(14) is a point-to-point movement,
i.e., this task is rather well suited for episodic Natural Actor-Critic. In Figure
2 (2), we show a comparison with GPOMDP for simple, single DOF task with
a reward of rk(x0:N , u0:N) =

∑N
i=0 c1q̇

2
d,k,i + c2(qd;k;N − gk)2; where c1 = 1,

c2 = 1000, and gk is chose appropriately. We also evaluated the same setup in
a challenging robot task, i.e., the planning of these motor primitives for a seven
DOF robot task. The task of the robot is to hit the ball properly so that it flies
as far as possible. Initially, it is taught in by supervised learning as can be seen
in Figure 3 (b); however, it fails to reproduce the behavior as shown in (c); sub-
sequently, we improve the performance using the episodic Natural Actor-Critic
which yields the performance shown in (a) and the behavior in (d).

Fig. 3. This figure shows(a) the performance of a baseball swing task when using the
motor primitives for learning. In (b), the learning system is initialized by imitation
learning, in (c) it is initially failing at reproducing the motor behavior, and (d) after
several hundred episodes exhibiting a nicely learned batting.
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5 Conclusion

In this paper, we have summarized novel developments in policy-gradient rein-
forcement learning, and based on these, we have designed a novel reinforcement
learning architecture, the Natural Actor-Critic algorithm. This algorithm comes
in (at least) two forms, i.e., the LSTD-Q(λ) form which depends on sufficiently
rich basis functions, and the Episodic form which only requires a constant as
additional basis function. We compare both algorithms and apply the latter on
several evaluative benchmarks as well as on a baseball swing robot example.

References

1. S. Amari. Natural gradient works efficiently in learning. Neural Computation,
10:251–276, 1998.

2. J. Bagnell and J. Schneider. Covariant policy search. In International Joint Con-
ference on Artificial Intelligence, 2003.

3. L.C. Baird. Advantage Updating. Wright Lab. Tech. Rep. WL-TR-93-1146, 1993.
4. L.C. Baird and A.W. Moore. Gradient descent for general reinforcement learning.

In Advances in Neural Information Processing Systems 11, 1999.
5. P. Bartlett. An introduction to reinforcement learning theory: Value function meth-

ods. In Machine Learning Summer School, pages 184–202, 2002.
6. D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-

tific, Belmont, MA, 1996.
7. J. Boyan. Least-squares temporal difference learning. In Machine Learning: Pro-

ceedings of the Sixteenth International Conference, pages 49–56, 1999.
8. S. Bradtke, E. Ydstie, and A.G. Barto. Adaptive Linear Quadratic Control Using

Policy Iteration. University of Massachusetts, Amherst, MA, 1994.
9. A. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmic movements by demon-

stration using nonlinear oscillators. In IEEE International Conference on Intelli-
gent Robots and Systems (IROS 2002), pages 958–963, 2002.

10. S. A. Kakade. Natural policy gradient. In Advances in Neural Information Process-
ing Systems 14, 2002.

11. V. Konda and J. Tsitsiklis. Actor-critic algorithms. In Advances in Neural Infor-
mation Processing Systems 12, 2000.

12. T. Moon and W. Stirling. Mathematical Methods and Algorithms for Signal
Processing. Prentice Hall, 2000.

13. J. Peters, S. Vijaykumar, and S. Schaal. Reinforcement learning for humanoid
robotics. In IEEE International Conference on Humandoid Robots, 2003.

14. R.S. Sutton and A.G. Barto. Reinforcement Learning. MIT Press, 1998.
15. R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods

for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems 12, 2000.

A Fisher Information Property

In Section 5, we explained that the all-action matrix Fθ equals in general the Fisher
information matrix G(θ). In [12], we can find the well-known lemma that by differen-
tiating

�
Rn p(x)dx = 1 twice with respect to the parameters θ, we can obtain�

Rn p(x)∇2
θ log p(x)dx = −

�
Rn p(x)∇θ log p(x)∇θ log p(x)T dx (15)
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for any probability density function p(x). Furthermore, we can rewrite the probability
p(τ 0:n) of a rollout or trajectory τ 0:n = [x0, u0, r0, x1, u1, r1, . . ., xn, un, rn, xn+1]T

as p (τ 0:n) = p (x0)
�n

t=0 p (xt+1 |xt, ut ) π (ut |xt ) which implies that

∇2
θ log p (τ 0:n) =

�n
t=0 ∇2

θ log π (ut |xt ) .

Using Equations (15, A), and the definition of the Fisher information matrix [1], we
can determine Fisher information matrix for the average reward case by

G(θ) = lim
n→∞

n−1Eτ {∇θ log p(τ )∇θ log p(τ 0:n)T } = − lim
n→∞

n−1Eτ

�
∇2

θ log p(τ )
�

,

= − lim
n→∞

n−1Eτ

��n
t=0 ∇2

θ log π (ut |xt )
�

= −
�

X
dπ(x)

�
U

π(u|x)∇2
θ log π(u|x)

dudx =
�

X
dπ(x)

�
U

π(u|x)∇θ log π(u|x)∇θ log π(u|x)T dudx = Fθ (16)

This proves that the all-action matrix is indeed the Fisher information matrix for
the average reward case. For the discounted case, with a discount factor γ we re-
alize that we can rewrite the problem where the probability of rollout is given by
pγ(τ 0:n) = p(τ 0:n)(

�n
i=0 γi

Ixi,ui), and derive that the all-action matrix equals the
Fisher information matrix by the same kind of reasoning as in Eq.(16). Therefore, we
can conclude that in general, i.e., G(θ) = Fθ .

B Proof of the Covariance Theorem

For small parameter changes ∆h and ∆θ, we have ∆θ = ∇hθT ∆h. If the natural
policy gradient is a covariant update rule, a change ∆h along the gradient ∇hJ(h)
would result in the same change ∆θ along the gradient ∇θJ(θ) for the same scalar step-
size α. By differentiation, we can obtain ∇hJ(h) = ∇hθ∇θJ(θ).It is straightforward
to show that the Fisher information matrix includes the Jacobian ∇hθ twice as factor,

F (h) =
�

X
dπ(x)

�
U

π(u|x)∇h logπ(u|x)∇h logπ(u|x)T dudx,

= ∇hθ
�

X
dπ(x)

�
U

π(u|x)∇θ logπ(u|x)∇θ logπ(u|x)T dudx∇hθT ,

= ∇hθF (θ)∇hθT .

This shows that natural gradient in the h parameterization is given by

�∇hJ(h) = F −1(h)∇hJ(h) =
	
∇hθF (θ)∇hθT


−1
∇hθ∇θJ(θ).

This has a surprising implication as it makes it straightforward to see that the natural
policy is covariant since

∆θ = α∇hθT ∆h = α∇hθT �∇hJ(h), = α∇hθT
	
∇hθF (θ)∇hθT


−1
∇hθ∇θJ(θ),

= αF −1(θ)∇θJ(θ) = α �∇θJ(θ),

assuming that ∇hθ is invertible. This concludes that the natural policy gradient is in
fact a covariant gradient update rule.
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