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Abstract. In this paper we aim to show that instance-based classi-
fication can replace the classifier component of a rule learner and of
maximum-entropy modeling, thereby improving the generalization accu-
racy of both algorithms. We describe hybrid algorithms that combine rule
learning models and maximum-entropy modeling with instance-based
classification. Experimental results show that both hybrids are able to
outperform the parent algorithm. We analyze and compare the overlap
in errors and the statistical bias and variance of the hybrids, their par-
ent algorithms, and a plain instance-based learner. We observe that the
successful hybrid algorithms have a lower statistical bias component in
the error than their parent algorithms; the fewer errors they make are
also less systematic.

1 Introduction

A distinguishing characteristic of instance-based learning [1, 2] is that it is non-
abstracting local learning method. It does not abstract from the training in-
stances to form a model, but stores them as such in memory. All effort is di-
verted to the classification phase. To classify a new instance the instance-based
learning algorithm searches through memory to find the most similar instances
in the local neighborhood of the new instance, and assigns the majority class
label of the neighborhood.

Instance-based learning is also referred to as lazy learning as opposed to ea-
ger learning. Eager learning algorithms put significant effort in abstracting from
the training instances by creating condensed representations (decision trees, rule
sets, probability matrices, hyperplanes, etc.) during the learning phase. The clas-
sification phase of an eager learner reduces to a relatively effortless application
of the abstracted representation to new instances.

This contrast between instance-based learning (which puts effort in classifi-
cation) and eager learning (which invests its effort in the learning phase) forms
the motivation for constructing the hybrids described in this paper. Earlier work
has shown that combining lazy and eager learning techniques can be beneficial to
generalization performance [3, 5]. In this paper we describe hybrid algorithms in
which we combine effort-intensive eager learning in rule learning and maximum-
entropy models with effort-intensive instance-based classification. We take the
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system as constructed by the eager learner and replace its standard classifica-
tion component by instance-based classification through the k-nearest neighbor
(k-nn) classifier. From the eager learner perspective we hope that replacing
their simple classification method with the more sensitive local k-nn classifi-
cation method could improve generalization performance. Put alternatively, we
take the eager learner’s model and transplant it into the distance metric of the
instance-based learner. The hybrid algorithms use the model as produced by the
eager learner to modify the distance calculations central in k-nn.

We construct three hybrid algorithms. The first combines maximum-entropy
modeling with k-nn, the second and third hybrids both combine rule learning
with k-nn, in two different ways. We investigate the performance of the hybrid
algorithms and compare them to the performance of their parent algorithms.
We also analyze to which extent the hybrid deviates functionally from its two
parent algorithms. To get a deeper insight in the differences and commonalities
of the parent algorithms and the hybrids, we analyze their overlap in errors and
the statistical bias and variance.

In Section 2 we discuss the different learning algorithms and the construction
of the hybrid algorithms. Section 3 and 4 provide a description of the experi-
mental setup and the results, respectively. Section 5 describes the error analysis
and bias-variance analysis. We discuss our findings in Section 6.

2 Algorithms

We first describe the three machine learning algorithms involved in this study
briefly: instance-based learning, maximum-entropy modeling and rule learning.
With instance-based learning we focus on two aspects: the mvdm distance metric
and feature weighting, because these play a role in the hybrid algorithms. In
the next two subsections we describe the construction of each of the hybrid
algorithms and our motivations.

The k-nearest neighbor classification rule [1] is the classifier engine of the
instance-based learning algorithm. The rule classifies new instances by searching
for the k nearest neighbors to the new instance and extrapolating the majority
class label found among the k nearest neighbors to the new instance. The distance
between instances can be estimated with different distance metrics. A simple
metric for nominal features is the overlap metric (or Manhattan distance, or L1-
norm distance) which counts the number of mismatching feature values between
two instances. A more sophisticated metric that estimates real-valued distances
between pairs of nominal values is the Modified Value Difference Metric (mvdm)
introduced in [6].

Mvdm estimates, from training data, the distance between two symbolic
feature values v1 and v2 as a vector distance between their two class distributions:

δ(v1, v2) =
j∑

i=1

|P (Ci|v1) − P (Ci|v2)| (1)
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where the vector length is determined by j, the number of classes, and P (Ci|v1)
represents the conditional probability of class i co-occurring with value 1.

Other possible metrics include alternative distance metrics for vector dis-
tances, such as the Jeffrey divergence metric (a symmetrical version of Kullback-
Leibler distance), and the dot product metric or the cosine distance metric for
numerical features. In addition, the k-nn algorithm can have several other al-
gorithmic parameters such as the k parameter, feature weighting metrics, in-
dividual instance weighting metrics, and distance-weighted class voting among
nearest neighbors. Feature weighting is an important parameter as its purpose is
to assign higher weights to more important features [7]. A mismatch on a feature
with a high weight will enlarge the distance between two instances more than
a mismatch on a low weighted feature will. Some examples of feature weighting
methods are Information Gain, Gain Ratio and Chi-square. In our experiments
we employ the TiMBL software [8]1, which implements all of the mentioned
optional distance metrics and weighting metrics.

Maximum-entropy modeling [9] is a statistical learning approach that learns
a probability distribution from labeled training data. Maximum-entropy models
(maxent) only represent what is known from the labeled training instances and
assume as little as possible about what is unknown; maxent converges to a dis-
tribution with maximal entropy. Finding the distribution matrix between values
and classes with the maximal entropy is done in an iterative way with algorithms
such as L-BFGS [10]. In our experiments we use the maximum-entropy modeling
software package maxent by Zhang Le 2.

Rule learning produces a set of classification rules based on a labeled training
set. The condition part of the rules is, depending on the learner’s rule grammar,
a test on the presence of certain values in the input, combined with for example
boolean operators. Many variants of rule learning exist, varying in the way the
rules are induced or in the way the rules are applied. A prominent class of rule
learners is those using sequential covering. In an iterative process they learn one
rule at the time (prioritized by some maximized weighted function that con-
siders coverage, accuracy, and byte length), and remove all examples from the
data that are covered by this rule. We adopt Ripper (Repeated Incremental
Pruning to Produce Error Reduction) [11] as the rule learning algorithm in our
experiments3. Ripper can produce ordered and unordered rule sets. In classifi-
cation, the first matching rule in a ordered rule set determines the class. For an
unordered rule set, the matching rule with the lowest error on the training set
determines the class.

2.1 k-nn and Maximum-Entropy Modeling

In this section we describe the construction and motivation of the hybrid algo-
rithm that combines k-nn with maximum-entropy modeling.
1 We ran experiments with TiMBL version 5.1.
2 URL: http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html. We ran

experiments with maxent version 20041229.
3 In our experiments we used Ripper version 2.5 (patch 1).
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The distribution matrix structure of maxent is identical to the class distri-
bution matrix structure between feature values and classes used by the mvdm

metric of k-nn. We exploit this structural equivalence to construct the hybrid
algorithm we will henceforth refer to as maxent-h. We employ the method pro-
posed by [12]. After training maxent, we replace the class distribution matrix of
the mvdm metric with the matrix produced by the maximum-entropy learning
algorithm. We refer to this new metric as the maxent–mvdm distance metric.

By constructing this hybrid we hypothetically repair a known weakness of the
mvdm metric of k-nn: its sensitivity to data sparseness. As the normal mvdm

metric uses raw conditional probabilities calculated from frequency counts, two
low-frequent feature values that accidently occur with the same class will be
regarded as identical by mvdm; when they occur with different classes their dis-
tance is estimated as maximal. A re-estimation of probabilities such as produced
by the maximum-entropy algorithm may smooth the mvdm metric.

Seen from the perspective of maxent, the major difference between maxent

and the hybrid maxent-h is that the latter does not use the maximum-entropy
matrix and the exponential maximum-entropy probability function to produce
class likelihood estimates, but instead uses the maxent–mvdm distance metric
to find the k nearest neighbors in the data, and extrapolates the neighbors’
majority output class.

Relevant related work is reported in [4]. They compare instance-based learn-
ing (with mvdm metric) with Naive Bayes, and construct a range of intermediate
hybrid variants, each more or less similar to Naive Bayes or the instance-based
learner with mvdm. One of these variants has a close resemblance to our hybrid
maxent-h, namely the variant that stores all training instances in memory, and
uses the Naive Bayes metric to calculate distances between instances. The results
of the reported experiments are quite diverse and inconclusive.

2.2 k-nn and Rule Learning

In this section we describe and motivate the construction of two different hybrid
algorithms that combine rule learning with k-nn.

We use the rule set as induced by Ripper to construct the hybrid algorithm,
analogous to [13]. Per instance, whether it is in the training data or in the test
data, we convert the rules into binary features that represent whether or not
the rule fires on the instance. We generate two versions of the hybrid algorithm.
In the first version the binary rule-features replace the original features in the
instances. In other words, this operation transforms the original feature space
into a new one [5]. We convert all training and test instances into this binary
format and feed them to the instance-based learner. The hybrid subsequently
uses the k-nn classification method to classify new examples. We refer to this
hybrid as rules-r-h, where the middle r denotes replace.

From the k-nn perspective, replacing the original features of the instances
by rule-features can be considered as a compression and filtering step in which
the rule learning algorithm has removed noise and irrelevant information, and
grouped interacting feature values together of which k-nn is incapable. From
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the perspective of the rule learning algorithm, we do not have the simple clas-
sification strategy of taking the class of the rule that fires first, but the local
classification method of k-nn.

In the hybrids, rules are presented as active-inactive binary features, and
more than one rule can be active for a particular instance. As k-nn can be used
with k > 1, the nearest neighbors can also contain different active rules that are
applied to the new instance. Several rules, instead of only one, may be involved
in the classification.

In the second version of the hybrid, rules-a-h, where a stands for adding,
the rule-features are added to the original instance features. Thus, this hybrid
is a k-nn classifier with extra added features that represent the per-instance
firing patterns of the induced rule set. In this case the rule features cannot be
considered as a compression and filtering step, but adding these rule-features
modifies the distance calculations in k-nn. As explained above feature weight-
ing in k-nn gives a higher weight to more important features. As many of
the created rule-features will have a strong predictive power, they are likely
to receive high feature weights, making them able to influence the distance
calculation.

[3] also proposes a hybrid algorithm that combines rule learning with k-nn

called ‘RISE’. RISE applies creates a rule set by carefully generalizing instances.
It searches for an optimal rule set by repeatedly finding the nearest instances,
and generalizing over them. The most important difference between RISE and
our approach is that RISE considers rules as generalized instances, while our
approach differentiates between rules and instances as we transform rules to
create features that are added to the instances or replace the original features
in the instances.

3 Experimental Setup

We apply the three parent algorithms and the three hybrid algorithms on 29
data sets from the UCI repository of machine learning databases [14]. We per-
form 10-fold cross validation (CV) experiments and measure the mean accuracy
and standard deviation on the ten folds. We conduct paired t-tests between out-
comes of pairs of algorithms to determine the significance of the difference in
performance.

k-nn and rules offer several algorithmic parameters that, individually and in
combination, can affect the functioning of the algorithms in unpredictable ways.
We use a wrapped-based method to set them automatically for all k-nn and
rules modules involved in our study, including the hybrids. For small datasets
it is feasible to run pseudo-exhaustively a large amount of wrapped validation
experiments [15], covering all possible combinations of nominal parameter values
and sequences of selected values of real-valued parameters. We do this for data
sets below 1,000 instances: we perform wrapped internal 10-fold CV experiments
nested within the main 10-fold CV experiments. We measure accuracy and select
the average-best combination of settings over the internal ten folds.
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For larger data sets a complete recombination of algorithmic parameter set-
tings tested on the entire training set becomes infeasible. Rather than running
the algorithms with their default settings, we adopt wrapped progressive sam-
pling, or wps [16], a heuristic automatic procedure that, on the basis of validation
experiments internal to the training material, searches among algorithmic pa-
rameter combinations for a combination likely to yield optimal generalization
performance on unseen data.

We test five algorithmic parameters of k-nn with a total of 925 parameter
combinations, default settings are marked in bold:

– number of nearest neighbors: 1, 3, 5, 7, 9, 11, 13, 15, 19, 25, 35;
– feature weighting: none, gain ratio, information gain, shared variance, chi-square;
– distance metric: overlap, mvdm, Jeffrey divergence;
– neighbor weighting: normal majority voting, inversed linear weighting, inversed

distance weighting (only when k > 1)
– frequency threshold for switching from mvdm distance metric to overlap metric:

1, 2;

For the rule learning algorithm RIPPER we test seven algorithmic parame-
ters which leads to a total of 972 parameter combinations to be tested:

– number of extra optimization rounds: 0, 1, 2;
– order of the classes: starts by making rules for the most frequent classes, start

with least frequent classes, unordered.
– rule simplification: 0.5, 1.0, 2.0;
– misclassification cost: 0.5, 1.0, 2.0;
– minimum number of instances covered by rule: 1, 2, 5, 10, 20, 50;
– negative tests for nominal valued features: yes, no;

We did not optimize the parameters of maxent as it was shown in [16]
that neither exhaustive wrapping nor wps increased the generalization accuracy
of this algorithm. We train maxent with L-BFGS parameter estimation, 100
iterations and a Gaussian prior with mean zero and σ2 of 1.0.

Different machine learning algorithms have different methods to deal with
continuous feature values. In order to rule out differences between algorithms
we discretize the continuous features in some of the UCI benchmark tasks in a
preprocessing step, using the entropy-based discretization method of [17].

4 Results

In this section we describe the results of all algorithms discussed in Section 2.
Table 1 lists the names and number of instances of the 29 data sets, along with
the mean accuracies and standard deviations of 10-fold CV experiments with all
algorithms. (Note: cl-h-disease stands for ‘cleveland-heart-disease’, and soybean-l
stands for ‘soybean large’.)

We first look at the performance of the three parent machine learning algo-
rithms. Table 2 shows the results of significance tests on the 29 UCI benchmarks
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Table 1. Mean accuracy and standard deviation of the 10-fold CV experiments on the
29 UCI tasks for all algorithms. Best performances per task are printed in boldface.

task # inst. k-nn maxent rules maxent-h rules-r-h rules-a-h

abalone 4177 24.6 ± 2.8 23.6 ± 1.7 18.1 ± 1.7 22.8 ± 2.2 18.0 ± 1.7 25.0 ± 2.5
audiology 226 80.5 ± 6.3 80.9 ± 5.0 76.5 ± 7.7 81.3 ± 5.8 61.0 ± 9.4 81.8 ± 5.2
bridges 104 54.7 ± 10.6 61.6 ± 9.1 53.8 ± 14.3 55.7 ± 13.1 52.9 ± 17.2 55.7 ± 13.1
car 1728 96.5 ± 1.3 90.9 ± 2.2 97.6 ± 1.1 96.5 ± 1.5 94.0 ± 4.0 98.4 ± 0.9
cl-h-disease 303 55.7 ± 5.4 55.1 ± 5.0 58.4 ± 5.9 54.8 ± 5.8 58.4 ± 5.9 58.4 ± 5.2
connect4 67557 77.7 ± 1.8 75.7 ± 0.5 76.3 ± 1.7 78.1 ± 1.9 75.2 ± 1.3 78.6 ± 2.5
ecoli 336 79.5 ± 4.9 76.5 ± 7.8 69.7 ± 10.9 78.6 ± 2.8 72.6 ± 12.1 78.0 ± 6.3
flag 194 66.9 ± 11.4 69.8 ± 13.4 61.8 ± 8.8 68.9 ± 14.9 61.8 ± 7.8 65.8 ± 10.9
glass 214 67.7 ± 8.4 70.1 ± 11.6 60.7 ± 6.5 61.5 ± 9.9 60.8 ± 8.0 66.9 ± 10.1
kr-vs-kp 3196 96.8 ± 1.2 96.8 ± 0.6 99.2 ± 0.5 99.1 ± 0.4 99.2 ± 0.5 99.2 ± 0.5
letter 20000 95.6 ± 0.5 85.0 ± 0.7 73.8 ± 1.5 95.9 ± 0.7 74.6 ± 1.4 95.6 ± 0.4
lung-cancer 32 33.3 ± 12.9 39.2 ± 24.7 31.7 ± 24.1 43.3 ± 13.3 25.0 ± 12.9 34.2 ± 16.0
monks1 432 100.0 ± 0.0 75.0 ± 4.0 99.3 ± 2.0 93.7 ± 10.5 100.0 ± 0.0 100.0 ± 0.0
monks2 432 94.0 ± 11.8 65.1 ± 5.5 72.0 ± 8.1 96.3 ± 8.3 75.5 ± 12.2 97.0 ± 4.2
monks3 432 97.2 ± 2.5 97.2 ± 2.5 97.2 ± 2.5 97.2 ± 2.5 96.5 ± 2.6 97.2 ± 2.5
mushroom 8124 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 98.7 ± 2.6 100.0 ± 0.0
nursery 12960 99.4 ± 0.5 92.4 ± 0.4 97.7 ± 0.8 97.9 ± 1.1 97.9 ± 0.7 99.2 ± 0.4
optdigits 5620 98.0 ± 0.7 95.8 ± 0.8 89.3 ± 1.0 97.3 ± 0.6 89.9 ± 1.0 97.9 ± 0.6
pendigits 10992 93.4 ± 0.9 86.0 ± 1.2 82.6 ± 1.7 92.0 ± 1.4 81.7 ± 3.5 92.5 ± 1.5
promoters 106 87.0 ± 7.1 92.5 ± 9.0 79.4 ± 7.9 93.5 ± 8.2 80.3 ± 8.7 83.5 ± 11.2
segment 2310 95.7 ± 0.9 92.1 ± 2.8 90.5 ± 3.6 95.9 ± 1.1 90.6 ± 3.6 95.8 ± 1.3
solar-flare 1389 94.2 ± 2.2 94.7 ± 1.8 94.6 ± 1.5 94.2 ± 1.8 94.6 ± 1.5 94.2 ± 1.9
soybean-l 683 92.8 ± 4.2 92.2 ± 2.8 91.1 ± 3.0 93.1 ± 3.2 91.8 ± 3.2 92.8 ± 3.5
splice 3190 95.3 ± 1.0 94.6 ± 0.8 94.1 ± 1.6 94.8 ± 1.5 94.2 ± 1.1 95.8 ± 0.7
tictactoe 958 95.8 ± 3.8 98.3 ± 0.7 99.7 ± 0.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
vehicle 846 67.6 ± 4.5 63.5 ± 5.2 55.7 ± 5.0 66.3 ± 5.4 56.0 ± 5.2 64.2 ± 5.7
votes 435 95.2 ± 2.4 96.5 ± 2.1 94.2 ± 1.6 95.4 ± 2.3 94.2 ± 1.6 94.9 ± 1.3
wine 178 96.1 ± 2.6 94.9 ± 5.3 93.2 ± 6.5 96.6 ± 2.7 92.7 ± 7.0 95.5 ± 4.9
yeast 1484 53.3 ± 2.9 49.3 ± 3.9 42.2 ± 3.2 55.4 ± 3.0 40.2 ± 2.1 52.0 ± 4.7

Table 2. Comparison of the three parent algorithms through summary counts of
won/tied/lost outcomes of paired t-tests on the mean accuracy and standard deviation
of the 10-fold CV experiments on the 29 UCI tasks.

k-nn maxent rules

k-nn 10/17/2 14/12/3
maxent 2/17/10 10/13/6
rules 3/12/14 6/13/10

tasks of each of the algorithms compared to the other. Each cell shows the num-
ber of times the algorithm in the row won/tied/lost as compared to the algorithm
in the column. The counts in the table are based on paired t-tests at p < 0.05 on
the pairwise accuracies obtained in 10-fold CV experiments. Overall, the results
indicate that k-nn performs better than the other two parent algorithms. max-

ent tends to perform better than rules on 10 data sets, and rules outperforms
maxent on 6 data sets.

Comparisons (again in won/tied/lost counts) between the hybrid algorithms
and their three parent algorithms are displayed in Table 3. We observe that
maxent-h performs quite equally to k-nn, while outperforming maxent on 12
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Table 3. Comparison of the three hybrids with their parent algorithms, through sum-
mary counts of won/tied/lost outcomes of paired t-tests on the mean accuracy and
standard deviation of the 10-fold CV experiments on 29 UCI tasks.

k-nn maxent

maxent-h 4/21/4 12/17/0

k-nn rules

rules-r-h 2/14/13 3/23/3
rules-a-h 4/24/1 16/13/0

data sets. rules-r-h performs worse than k-nn: it wins only on two data sets
and has a significantly lower accuracy in 13 cases. rules-r-h performs very
similarly to rules. The second rule learning hybrid rules-a-h has a signifi-
cantly higher accuracy than k-nn on 4 data sets, and on 16 tasks compared
to rules.

5 Analysis

We are not solely interested in whether each hybrid has a better overall gen-
eralization performance than one or both of the parent algorithms. We also
investigate to which extent the hybrid deviates functionally from its two parent
algorithms. In this section we take a closer look at the degree of overlap in the
errors made by the hybrids compared to their parents. Additionally, we measure
the statistical bias and variance of the algorithms.

5.1 Complementary Error Rate Analysis

The complementary error rate between two algorithms A and B, Comp(A, B),
measures the percentage of mistakes that A makes which are not made by algo-
rithm B [18]:

Comp(A, B) =
(

1 − # of common errors
# of errors of A only

)
∗ 100 (2)

The relative magnitude of the complementary error rate between two algo-
rithms can be seen as an indication of their functional similarity with respect to
classification behavior. The lower the complimentary error rate between a pair
of algorithms is, the more they are functionally similar.

We calculate the complementary rates between each hybrid compared to its
two parent algorithms where the hybrid is A in Comp(A, B). Table 4 (second
column) lists macro averages over the 29 data sets. Almost all pairs of algorithms
have complementary rates of more than 30%, meaning that at least one-third
of the misclassified instances by the hybrid is classified correctly by the parent
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Table 4. Complementary rates and overlapping errors between hybrids and their par-
ent algorithms, macro-averaged over the 29 data sets

Two algorithms Complementary rate Error overlap

maxent-h – k-nn 32.9 60.0
maxent-h – maxent 34.9 54.2

rules-a-h – k-nn 32.3 60.9
rules-a-h – rules 28.7 56.2

rules-r-h – k-nn 54.8 32.0
rules-r-h – rules 21.3 74.3

classifier. The exception to this observation is the pair rules-r-h – rules which
produces the low rate of 21.3%, indicating that their functional classification
behavior is relatively similar.

Besides calculating whether the classifiers misclassify the same instances, we
also count whether they make the same errors. We investigate the errors that
are made by the hybrid algorithms and we calculate the percentage of times that
the parent algorithms assign the same incorrect label. Table 4 (third column)
displays the macro average of overlap in error labels on the 29 data sets. We
see that the hybrids maxent-h and rules-a-h have approximately 5% more
overlap in error with k-nn than with the eager parent algorithm. The hybrid
rules-r-h makes the same errors as rules to a very high extent (74%), while
having little overlap (32%) with k-nn.

5.2 Bias–Variance Analysis

The expected average error of a classifier can be decomposed in three compo-
nents: statistical bias, variance and noise. The statistical bias of an algorithm
reflects the systematic error of the algorithms whereas the term variance ex-
presses the variability in error over a set of different training sets. Noise presents
the errors in the data.

In this section we analyze whether the hybrid algorithms have a different
statistical bias and variance than their two parent algorithms. We employ the
method of [19]: we perform sampling experiments, measure the average error
rate and calculate the decomposition into bias and variance components.4 We
select 16 data sets from our original set of 29 that have more than 500 instances.

[19] use the following formula to decompose the expected zero-one loss E(C)
of discrete classifiers into bias and variance, given a fixed target and averaged
over a sampling of training sets:

4 We did not optimize the algorithmic parameters, as small training samples do not
allow any reliable cross-validated wrapping.
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E(C) =
∑

x

p(x)(σ2
x + bias2x + variancex) (3)

bias2x ≡ 1/2
∑

yεY

[p(YT = y|x) − p(YH = y|x)]2 (4)

variancex ≡ 1/2(1 −
∑

yεY

P (YH = y|x)2) (5)

where x represents test example x, and σ2
x represents the noise in the data set

([19] argue to estimate noise to be zero as it is hard to calculate in practice);
bias2 (4) is estimated as the squared difference between the true target class
and the predicted class, averaged over the training samples. (We refer to bias2

as ‘bias’.) Variance (5) is estimated as the variability over the different training
sets. p(YT = y|x) is the estimation that test example x is classified as y by the
learning algorithm, averaged over the training set samples. p(YF = y|x) is the
probability that test example x has the true target label y, averaged over the
training set samples. Both components are summed over all classes yεY .

The purpose of these analyses is to investigate whether the proportion be-
tween bias and variance differs for the hybrids and their parent algorithms. In
order to get a better view on the balance between bias and variance we scaled
all error rates to 100%. Table 5 shows the macro averaged bias over the 16 data
sets (the variance always being 100 − bias2%). maxent has the highest bias;
rules-r-h has the lowest. When we compare each hybrid algorithm to its two
parent algorithms, we see that all hybrids have a lower bias than k-nn, and also
lower than the other parent algorithm. The three hybrids make less systematic
errors than both of their parent algorithms.

Table 5. The scaled bias component in the error of all algorithms, macro averaged
over the 16 data sets

Algorithm Bias Algorithm Bias

k-nn 57.29 maxent-h 56.92
maxent 65.56 rules-r-h 51.63
rules 55.50 rules-a-h 54.99

6 Discussion

Our experiments have brought forward evidence in two cases that instance-
based classification can replace other classification procedures successfully. We
constructed hybrids in which the learning component consisted either of rule
learning or of maximum-entropy modeling, and in which the classification was
performed with the k-nn classification rule. When comparing the hybrid algo-
rithms to their parent algorithms, we observed that maxent-h and rules-a-h

both outperform the eager parent algorithm often, and are never significantly
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outperformed by them. At the same time these two hybrids perform almost
identically to k-nn. When investigating more deeply to which extent the func-
tional behavior of the hybrid algorithms differs from their parent algorithms
by error analysis, we see that the hybrids maxent-h and rules-a-h both mis-
classify different instances than both their parent algorithms in at least 30%
of the cases, while rules-r-h functions quite similarly to rules. The two suc-
cessful hybrids, maxent-h and rules-a-h, have a slight higher overlap with
k-nn of approximately 5% compared to the error overlap with either rules

or maxent.
An intriguing observation is that the bias of the three hybrids is lower than

that of their parent algorithms. Combining the observed performance differences
(Table 3) and the bias components of all algorithms (Table 5), we can assume
that the performance gains of maxent-h and rules-a-h over maxent and
rules, respectively, are due to a decrease in the number of systematic errors the
hybrids generate. Given that the relative bias components of the two hybrids are
also lower than that of k-nn, at virtually no loss of performance, we conclude
that these two hybrids, maxent-h and rules-a-h, represent a “best of both
worlds” situation, since their different-source components cause them to avoid
systematic errors their parent algorithms make.

The hybrid rules-r-h shows a different behavior than the other two hy-
brids. rules-r-h performs worse than k-nn and equals the performance of the
rule learning algorithm. Also, complementary rates and overlap in error show
that rules-r-h has a quite similar functional classification behavior to that of
the rule learning algorithm. Our expectation was that the hybrid would differ
from rules in classification behavior, as more than one binary rule-feature can
be active in the feature representation of the hybrid and larger k values allow
several nearest instances with different active bits to be involved. In our exper-
iments on the 29 data sets, the average number of active binary rule-features
in the training folds was 1.3 bits on average 67.5 rule-features per instance.
However, in 70% of the experiments with rules-r-h the automatic algorithmic
parameter selection has chosen the k value to be 1, meaning that the poten-
tial benefit of k-nn classification is not fully explored. The hybrid rules-a-h

uses k = 1 in only 23% of the experiments, thereby profiting from the k-nn

classification method.
In future work we plan to compare the hybrids to external classifier com-

bination schemes. As our hybrids, classifier combination schemes benefit from
combining partly complementary classifier biases; our method has the intrin-
sic advantage that the resulting classifier is one integrated model rather
than two.
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