Skip to main content

Algorithms and Software for Collaborative Discovery from Autonomous, Semantically Heterogeneous, Distributed Information Sources

  • Conference paper
Algorithmic Learning Theory (ALT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3734))

Included in the following conference series:

Abstract

Development of high throughput data acquisition technologies, together with advances in computing, and communications have resulted in an explosive growth in the number, size, and diversity of potentially useful information sources. This has resulted in unprecedented opportunities in data-driven knowledge acquisition and decision- making in a number of emerging increasingly data-rich application domains such as bioinformatics, environmental informatics, enterprise informatics, and social informatics (among others). However, the massive size, semantic heterogeneity, autonomy, and distributed nature of the data repositories present significant hurdles in acquiring useful knowledge from the available data. This paper introduces some of the algorithmic and statistical problems that arise in such a setting, describes algorithms for learning classifiers from distributed data that offer rigorous performance guarantees (relative to their centralized or batch counterparts). It also describes how this approach can be extended to work with autonomous, and hence, inevitably semantically heterogeneous data sources, by making explicit, the ontologies (attributes and relationships between attributes) associated with the data sources and reconciling the semantic differences among the data sources from a user’s point of view. This allows user or context-dependent exploration of semantically heterogeneous data sources. The resulting algorithms have been implemented in INDUS – an open source software package for collaborative discovery from autonomous, semantically heterogeneous, distributed data sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  2. Duda, R., Hart, E., Stork, D.: Pattern Recognition. Wiley, Chichester (2000)

    Google Scholar 

  3. Thrun, S., Faloutsos, C., Mitchell, M., Wasserman, L.: Automated learning and discovery: State-of-the-art and research topics in a rapidly growing field. AI Magazine (1999)

    Google Scholar 

  4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  5. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1995)

    Google Scholar 

  6. Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web - Probabilistic Methods and Algorithms. Wiley, New York (2003)

    Google Scholar 

  7. Baldi, P., Brunak, S.: Bioinformatics - A Machine Learning Approach. MIT Press, Cambridge (2003)

    Google Scholar 

  8. Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. PWS Publishing Co., New York (1999)

    Google Scholar 

  9. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J., Harris, M., Hill, D., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J., Richardson, J., Ringwald, M., Rubin, G., Sherlock, G.: Gene ontology: tool for unification of biology. Nature Genetics 25, 25–29 (2000)

    Article  Google Scholar 

  10. Reinoso-Castillo, J., Silvescu, A., Caragea, D., Pathak, J., Honavar, V.: Information extraction and integration from heterogeneous, distributed, autonomous information sources: a federated, query-centric approach. In: IEEE International Conference on Information Integration and Reuse, Las Vegas, Nevada (2003)

    Google Scholar 

  11. Caragea, D., Pathak, J., Honavar, V.: Learning classifiers from semantically heterogeneous data. In: Proceedings of the International Conference on Ontologies, Databases, and Applications of Semantics for Large Scale Information Systems (2004)

    Google Scholar 

  12. Dzeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Dzeroski, S., Lavrac, N.(eds.) Relational Data Mining. Springer, Heidelberg (2001)

    Google Scholar 

  14. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, Orlando, FL, pp. 1300–1309. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  15. Atramentov, A., Leiva, H., Honavar, V.: Learning decision trees from multi-relational data. In: In Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 38–56. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Neville, J., Jensen, D., Gallagher, B.: Simple estimators for relational bayesian classifiers. In: ICDM 2003 (2003)

    Google Scholar 

  17. Casella, G., Berger, R.: Statistical Inference. Duxbury Press, Belmont (2001)

    Google Scholar 

  18. Davidson, A.: Statistical Models. Cambridge University Press, London (2003)

    Google Scholar 

  19. Kearns, M.: Efficient noise-tolerant learning from statistical queries. Journal of the ACM 45, 983–1006 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Caragea, D., Silvescu, A., Honavar, V.: A framework for learning from distributed data using sufficient statistics and its application to learning decision trees. International Journal of Hybrid Intelligent Systems 1 (2004)

    Google Scholar 

  21. Caragea, D., Silvescu, A., Honavar, V.: Decision tree induction from distributed heterogeneous autonomous data sources. In: Proceedings of the International Conference on Intelligent Systems Design and Applications, Tulsa, Oklahoma (2003)

    Google Scholar 

  22. Caragea, D., Silvescu, A., Honavar, V.: Agents that learn from distributed dynamic data sources. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 53–61. Springer, Heidelberg (2000)

    Google Scholar 

  23. Caragea, C., Caragea, D., Honavar, V.: Learning support vector machine classifiers from distributed data. extended abstract. In: Proceedings of the 22nd National Conference on Artificial Intelligence, AAAI 2005 (2005)

    Google Scholar 

  24. Caragea, D.: Learning classifiers from Distributed, Semantically Heterogeneous, Autonomous Data Sources. Ph.d. thesis, Department of Computer Science. Iowa State University, Ames, Iowa, USA (2004)

    Google Scholar 

  25. Quinlan, R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  26. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees, Wadsworth, Monterey, CA (1984)

    Google Scholar 

  27. Graefe, G., Fayyad, U., Chaudhuri, S.: On the efficient gathering of sufficient statistics for classification from large sql databases. In: Proceedings of the Fourth International Conference on KDD, pp. 204–208. AAAI Press, Menlo Park (1998)

    Google Scholar 

  28. Moore, A.W., Lee, M.S.: Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research 8, 67–91 (1998)

    MATH  MathSciNet  Google Scholar 

  29. Wang, X., Schroeder, D., Dobbs, D., Honavar, V.: Data-driven discovery of rules for protein function classification based on sequence motifs: Rules discovered for peptidase families based on meme motifs outperform those based on prosite patterns and profiles. In: Proceedings of the Conference on Computational Biology and Genome Informatics (2002)

    Google Scholar 

  30. Andorf, C., Silvescu, A., Dobbs, D., Honavar, V.: Learning classifiers for assigning protein sequences to gene ontology functional families. In: Fifth International Conference on Knowledge Based Computer Systems (KBCS 2004), India (2004)

    Google Scholar 

  31. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  32. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  33. Bradley, P.S., Mangasarian, O.L.: Massive data discrimination via linear support vector machines. Optimization Methods and Software 13(1), 1–10 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Srivastava, A., Han, E., Kumar, V., Singh, V.: Parallel formulations of decision-tree classification algorithms. Data Mining and Knowledge Discovery 3, 237–261 (1999)

    Article  Google Scholar 

  35. Grossman, L., Gou, Y.: Parallel methods for scaling data mining algorithms to large data sets. In: Zytkow, J. (ed.) Handbook on Data Mining and Knowledge Discovery. Oxford University Press, Oxford (2001)

    Google Scholar 

  36. Provost, F.J., Kolluri, V.: A survey of methods for scaling up inductive algorithms. Data Mining and Knowledge Discovery 3, 131–169 (1999)

    Article  Google Scholar 

  37. Park, B., Kargupta, H.: Constructing simpler decision trees from ensemble models using Fourier analysis. In: Proceedings of the 7th Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD 2002), Madison, WI, ACM SIGMOD, pp. 18–23 (2002)

    Google Scholar 

  38. Domingos, P.: Knowledge acquisition from examples via multiple models. In: Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, TN, pp. 98–106. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  39. Prodromidis, A., Chan, P., Stolfo, S.: Meta-learning in distributed data mining systems: issues and approaches. In: Kargupta, H., Chan, P. (eds.) Advances of Distributed Data Mining. AAAI Press, Menlo Park (2000)

    Google Scholar 

  40. Bhatnagar, R., Srinivasan, S.: Pattern discovery in distributed databases. In: Proceedings of the Fourteenth AAAI Conference, Providence, pp. 503–508. AAAI Press/The MIT Press (1997)

    Google Scholar 

  41. Kargupta, H., Park, B., Hershberger, D., Johnson, E.: Collective data mining: A new perspective toward distributed data mining. In: Kargupta, H., Chan, P. (eds.) Advances in Distributed and Parallel Knowledge Discovery. MIT Press, Cambridge (1999)

    Google Scholar 

  42. Mansour, J.: Learning boolean functions via the fourier transform. In: Theoretical Advances in Neural Computation and Learning. Kluwer, Dordrecht (1994)

    Google Scholar 

  43. Levy, A.: Logic-based techniques in data integration. In: Logic-based artificial intelligence, pp. 575–595. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  44. Caragea, D., Silvescu, A., Pathak, J., Bao, J., Andorf, C., Dobbs, D., Honavar, V.: Information integration and knowledge acquisition from semantically heterogeneous biological data sources. In: Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 175–190. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  45. Bonatti, P., Deng, Y., Subrahmanian, V.: An ontology-extended relational algebra. In: Proceedings of the IEEE Conference on Information Integration and Reuse, pp. 192–199. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  46. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL: Contextualizing ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  47. Bao, J., Honavar, V.: Collaborative ontology building with wiki@nt - a multi-agent based ontology building environment. In: Proceedings of the Third International Workshop on Evaluation of Ontology based Tools, at the Third International Semantic Web Conference ISWC, Hiroshima, Japan (2004)

    Google Scholar 

  48. Bao, J., Honavar, V.: An efficient algorithm for reasoning about subsumption and equivalence relationships to support collaborative editing of ontologies and inter-ontology mappings. under review (2005)

    Google Scholar 

  49. Hull, R.: Managing semantic heterogeneity in databases: A theoretical perspective. In: PODS, Tucson, Arizona, pp. 51–61 (1997)

    Google Scholar 

  50. Davidson, S., Crabtree, J., Brunk, B., Schug, J., Tannen, V., Overton, G., Stoeckert, C.: K2/Kleisli and GUS: experiments in integrated access to genomic data sources. IBM Journal 40 (2001)

    Google Scholar 

  51. Eckman, B.: A practitioner’s guide to data management and data integration in bioinformatics. Bioinformatics, 3–74 (2003)

    Google Scholar 

  52. Sheth, A., Larson, J.: Federated databases: architectures and issues. ACM Computing Surveys 22, 183–236 (1990)

    Article  Google Scholar 

  53. Barsalou, T., Gangopadhyay, D.: M(dm): An open framework for interoperation of multimodel multidatabase systems. IEEE Data Engineering (1992)

    Google Scholar 

  54. Bright, M., Hurson, A., Pakzad, S.: A taxonomy and current issues in multibatabase systems. Computer Journal 25, 5–60 (1992)

    Article  Google Scholar 

  55. Wiederhold, G., Genesereth, M.: The conceptual basis for mediation services. IEEE Expert 12, 38–47 (1997)

    Article  Google Scholar 

  56. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V., Widom, J.: The TSIMMIS approach to mediation: data models and languages. Journal of Intelligent Information Systems, Special Issue on Next Generation Information Technologies and Systems 8 (1997)

    Google Scholar 

  57. Chang, C.K., Garcia-Molina, H.: Mind your vocabulary: query mapping across heterogeneous information sources. In: ACM SIGMOD International Conference On Management of Data, Philadelphia, PA (1999)

    Google Scholar 

  58. Arens, Y., Chin, C., Hsu, C., Knoblock, C.: Retrieving and integrating data from multiple information sources. International Journal on Intelligent and Cooperative Information Systems 2, 127–158 (1993)

    Article  Google Scholar 

  59. Knoblock, C., Minton, S., Ambite, J., Ashish, N., Muslea, I., Philpot, A., Tejada, S.: The ariadne approach to Web-based information integration. International Journal of Cooperative Information Systems 10, 145–169 (2001)

    Article  Google Scholar 

  60. Lu, J., Moerkotte, G., Schue, J., Subrahmanian, V.: Efficient maintenance of materialized mediated views. In: Proceedings of 1995 ACM SIGMOD Conference on Management of Data, San Jose, CA (1995)

    Google Scholar 

  61. Levy, A.: The information manifold approach to data integration. IEEE Intelligent Systems 13 (1998)

    Google Scholar 

  62. Draper, D., Halevy, A.Y., Weld, D.S.: The nimble XML data integration system. In: ICDE, pp. 155–160 (2001)

    Google Scholar 

  63. Etzold, T., Harris, H., Beulah, S.: SRS: An integration platform for databanks and analysis tools in bioinformatics. Bioinformatics Managing Scientific Data, 35–74 (2003)

    Google Scholar 

  64. Haas, L., Schwarz, P., Kodali, P., Kotlar, E., Rice, J., Swope, W.: DiscoveryLink: a system for integrated access to life sciences data sources. IBM System Journal 40 (2001)

    Google Scholar 

  65. Stevens, R., Goble, C., Paton, N., Becchofer, S., Ng, G., Baker, P., Bass, A.: Complex query formulation over diverse sources in tambis. Bioinformatics, 189–220 (2003)

    Google Scholar 

  66. Chen, J., Chung, S., Wong, L.: The Kleisli query system as a backbone for bioinformatics data integration and analisis. Bioinformatics, 147–188 (2003)

    Google Scholar 

  67. Tannen, V., Davidson, S., Harker, S.: The information integration in K2. Bioinformatics, 225–248 (2003)

    Google Scholar 

  68. Tomasic, A., Rashid, L., Valduriez, P.: Scaling heterogeneous databases and design of DISCO. IEEE Transactions on Knowledge and Data Engineering 10, 808–823 (1998)

    Article  Google Scholar 

  69. Haas, L., Kossmann, D., Wimmers, E., Yan, J.: Optimizing queries across diverse sources. In: Proceedings of the 23rd VLDB Conference, Athens, Greece, pp. 267–285 (1997)

    Google Scholar 

  70. Rodriguez-Martinez, M., Roussopoulos, R.: MOCHA: a self-extensible database middleware system for distributed data sources. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, pp. 213–224 (2000)

    Google Scholar 

  71. Lambrecht, E., Kambhampati, S., Gnanaprakasam, S.: Optimizing recursive information-gathering plans. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1204–1211. AAAI Press, Menlo Park (1999)

    Google Scholar 

  72. Maluf, D., Wiederhold, G.: Abstraction of representation in interoperation. In: Sommer, G. (ed.) AFPAC 1997. LNCS(LNAI), vol. 1315. Springer, Heidelberg (1997)

    Google Scholar 

  73. Zhang, J., Honavar, V.: Learning decision tree classifiers from attribute-value taxonomies and partially specified data. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the International Conference on Machine Learning, Washington, DC, pp. 880–887 (2003)

    Google Scholar 

  74. Zhang, J., Honavar, V.: Learning concise and accurate naive bayes classifiers from attribute value taxonomies and data. In: Proceedings of the Fourth ICMD (2004)

    Google Scholar 

  75. Haussler, D.: Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework. Artificial Intelligence 36, 177–221 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  76. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29 (1997)

    Google Scholar 

  77. Caragea, D., Zhang, J., Pathak, J., Honavar, V.: Learning classifiers from distributed, ontology-extended data sources. under review (2005)

    Google Scholar 

  78. Walker, A.: On retrieval from a small version of a large database. In: VLDB Conference 1989 (1989)

    Google Scholar 

  79. DeMichiel, L.: Resolving database incompatibility: An approach to performing relational operations over mismatched domains. IEEE Trans. Knowl. Data Eng. 1 (1989)

    Google Scholar 

  80. Chen, A., Tseng, F.: Evaluating aggregate operations over imprecise data. IEEE Trans. On Knowledge and Data Engineering 8 (1996)

    Google Scholar 

  81. McClean, S., Scotney, B., Shapcott, M.: Aggregation of imprecise and uncertain information in databases. IEEE Transactions on Knowledge and Data Engineering 6 (2001)

    Google Scholar 

  82. Bergadano, F., Giordana, A.: Guiding induction with domain theories. In: Machine Learning An Artificial Intelligence Approach, vol. 3. Morgan Kaufmann (1990)

    Google Scholar 

  83. Pazzani, M., Kibler, D.: The role of prior knowledge in inductive learning. Machine Learning 9 (1992)

    Google Scholar 

  84. Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artificial Intelligence 70 (1994)

    Google Scholar 

  85. Aronis, J., Kolluri, V., Provost, F., Buchanan, B.: The WoRLD: knowledge discovery from multiple distributed databases. Technical Report ISL-96-6, Intelligent Systems Laboratory, Department of Computer Science, University of Pittsburgh, Pittsburgh, PA (1996)

    Google Scholar 

  86. Aronis, J., Provost, F.: Increasing the efficiency of inductive learning with breadth-first marker propagation. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (1997)

    Google Scholar 

  87. Nunez, M.: The use of background knowledge in decision tree induction. Machine Learning 6 (1991)

    Google Scholar 

  88. Almuallim, H., Akiba, Y., Kaneda, S.: On handling tree-structured attributes. In: Proceedings of the Twelfth International Conference on Machine Learning (1995)

    Google Scholar 

  89. Dhar, V., Tuzhilin, A.: Abstract-driven pattern discovery in databases. IEEE Transactions on Knowledge and Data Engineering 5 (1993)

    Google Scholar 

  90. Han, J., Fu, Y.: Exploration of the power of attribute-oriented induction in data mining. In: Fayyad, U.M. et al. (ed.) Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press (1996)

    Google Scholar 

  91. Hendler, J., Stoffel, K., Taylor, M.: Advances in high performance knowledge representation (1996)

    Google Scholar 

  92. Taylor, M., Stoffel, K., Hendler, J.: Ontology-based induction of high level classification rules. In: SIGMOD Data Mining and Knowledge Discovery workshop proceedings, Tuscon, Arizona (1997)

    Google Scholar 

  93. Pazzani, M., Mani, S., Shankle, W.: Beyond concise and colorful: Learning intelligible rules. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA (1997)

    Google Scholar 

  94. Pazzani, M., Mani, M., Shankle, W.: Comprehensible knowledge discovery in databases. In: Proceedings of the the Cognitive Science Conference (1997)

    Google Scholar 

  95. desJardins, M., Getoor, L., Koller, D.: Using feature hierarchies in bayesian network learning. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 260–270. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  96. Rubin, D.: Multiple imputations in sample surveys: A phenomenological bayesian approach to nonresponse. In: Proceedings of the American Statistical Association, Section on Survey Research Methods, pp. 29–34 (1978)

    Google Scholar 

  97. Rubin, D.: Multiple imputation for nonresponse in surveys. John Wiley and Sons, Chichester (1987)

    Book  Google Scholar 

  98. Rubin, D.: Multiple imputation after 18+ years. Journal of the American Statistical Association 91 (1996)

    Google Scholar 

  99. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Methods for imputation of missing values in air quality data sets. Atmospheric Environment 38 (2004)

    Google Scholar 

  100. Longford, N.: Missing data and small area estimation in the uk labour force survey. Journal of the Royal Statistical Society Series A-Statistics in Society 167 (2004)

    Google Scholar 

  101. Raghunathan, T.: What do we do with missing data? some options for analysis of incomplete data. Annual Review of Public Health 25 (2004)

    Google Scholar 

  102. Little, R., Rubin, D.: Statistical analysis with missing data, 2nd edn. John Wiley and Sons, Chichester (2002)

    MATH  Google Scholar 

  103. Madow, W., Olkin, I., Rubin, D.B.: Incomplete data in sample surveys. Theory and bibliographies, vol. 2. Academic Press, London (1983)

    Google Scholar 

  104. Madow, W., Nisselson, J., Olkin, I.: Incomplete data in sample surveys. Report and case studies, vol. 1. Academic Press, New York, London (1983)

    Google Scholar 

  105. Yan, C., Dobbs, D., Honavar, V.: A two-stage classifier for identification of protein-protein interface residues. Bioinformatics 20, i371–i378 (2004)

    Google Scholar 

  106. Yan, C., Honavar, V., Dobbs, D.: Identifying protein-protein interaction sites from surface residues - a support vector machine approach. Neural Computing Applications 13, 123–129 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caragea, D., Zhang, J., Bao, J., Pathak, J., Honavar, V. (2005). Algorithms and Software for Collaborative Discovery from Autonomous, Semantically Heterogeneous, Distributed Information Sources. In: Jain, S., Simon, H.U., Tomita, E. (eds) Algorithmic Learning Theory. ALT 2005. Lecture Notes in Computer Science(), vol 3734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564089_5

Download citation

  • DOI: https://doi.org/10.1007/11564089_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29242-5

  • Online ISBN: 978-3-540-31696-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics