
Logic and Model Checking

for Hidden Markov Models?

Lijun Zhang1, Holger Hermanns1,2, and David N. Jansen2

1 Department of Computer Science, Saarland University,
D-66123 Saarbrücken, Germany

2Department of Computer Science, University of Twente,
Enschede, The Netherlands

Abstract. The branching-time temporal logic PCTL∗ has been intro-
duced to specify quantitative properties over probability systems, such
as discrete-time Markov chains. Until now, however, no logics have been
defined to specify properties over hidden Markov models (HMMs). In
HMMs the states are hidden, and the hidden processes produce a se-
quence of observations. In this paper we extend the logic PCTL∗ to
POCTL∗. With our logic one can state properties such as “there is at
least a 90 percent probability that the model produces a given sequence
of observations” over HMMs. Subsequently, we give model checking al-
gorithms for POCTL∗ over HMMs.

1 Introduction

Hidden Markov models (HMMs) [17] were developed in the late 1960’s and have
been proven to be very important for many applications, especially speech recog-
nition [13], character recognition [22], biological sequence analysis [5], and pro-
tein classification problems [15]. Lately, HMMs receive increased attention in
the context of communication channel modelling [20] and of QoS properties in
wireless networks [9].

An HMM is a doubly embedded stochastic process with an underlying
stochastic process over some state space, which is hidden. The occupied state
can only be observed through another set of stochastic processes that produce a
sequence of observations. Given the sequence of observations, we do not exactly
know the occupied state, but we do know the probability distribution over the
set of states. This information is captured by a so-called belief state.

For a given HMM, one is often interested in the properties of the underlying
stochastic process. In addition, one is also interested to reason about properties
over the other set of stochastic processes which produce the observations. In this

? Parts of this work was carried out while the third author was with the Max-Planck-
Institut für Informatik, Saarbrücken. This work is partially supported by the NWO-
DFG bilateral project VOSS, the NWO Vernieuwingsimpuls award 016.023.010, and
by the DFG as part of the Transregional Collaborative Research Center SFB/TR
14 AVACS.

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 98–112, 2005.
c© IFIP International Federation for Information Processing 2005

paper, we introduce a logic called POCTL∗, which consists of state formulas,
path formulas and belief state formulas. POCTL∗ allows us to specify properties
of interests over HMMs. We consider the property:

There is at least a 90 percent probability that the model produces
the sequence of observations O = (o0, o1, . . . , on).

This property can be expressed in POCTL∗ by P≥0.9(Xo0Xo1 . . .Xontt). As
indicated by Rabiner [17], this probability can be viewed as the score which
specifies how well a given model matches the observations. In Speech Recogni-

tion [13], we want to find out the most likely sentence (with the highest score)
given a language and some acoustic input (observations). Assuming that we
know that the HMM for the word “Need” produces the acoustic observations
O with probability at least 0.9, then we can almost conclude that this acoustic
input represents the word “Need”. In the protein classification problem, we want
to classify the new protein to one known class. The idea is to construct an HMM
for every known class, and calculate the score of the new protein under every
class. The new protein belongs to the class which matches it (produces it with
the highest probability).

On one hand, POCTL∗ is basically an extension of PCTL∗ where the next op-
erator is equipped with an observation constraint. On the other hand, POCTL∗

can also be considered as a variant of the temporal logic ACTL∗, presented by
De Nicola et al. [14], in which the usual next operator is extended to constrain
the action label of the transition.

The PCTL∗ model checking [2, 1, 11] problem can be reduced to the QLS
(quantitative LTL specification) model checking problem. For QLS model check-
ing, one constructs first a Büchi automaton for an LTL formula using well-known
methods [23, 21, 10], and then builds the product of the system and the con-
structed Büchi automaton. Finally, the QLS model checking problem can be
reduced to a probabilistic reachability analysis in the product system.

Following the same line, we shall present the POCTL∗ model checking algo-
rithm as follows. First, it will be reduced to the QOS (quantitative OLTL speci-
fication, where OLTL abbreviates Observational LTL) model checking problem.
The latter can be further reduced to a probabilistic reachability analysis in the
product automaton. To that end, we construct a Büchi automaton for a given
OLTL formula. The construction is an adaption of the one presented in [10].

2 Preliminaries

Rabin Automaton. A deterministic Rabin automaton [18, 2] is a tuple Rφ =
(Σ,Q, qin, δ, U) where Σ is a nonempty finite alphabet, Q is a finite set of states,
qin ∈ Q is the initial state, δ : Q × Σ → Q is the transition function, and
U = {(Pi, Ri) | i = 1, . . . , r} is the Rabin acceptance condition where Pi, Ri ⊆ Q.

We call an infinite sequence w = w1, w2, . . . over Σ a word over Σ. w induces
an unique path π = q0, q1, . . . in R where q0 = qin, and qi+1 = δ(qi, wi) for i =
0, 1, π is an accepting path if inf(π) ⊆ Pj and inf(π) ∩Rj 6= ∅ for some j ∈
{1, . . . , r} where inf(π) denotes the set of states that occur infinitely often in π.

Logic and Model Checking for Hidden Markov Models 99

Discrete-time Markov Chains. A labeled discrete-time Markov chain (DTMC)
is a tuple D = (S,P, L) where S is a finite set of states, P : S × S → [0, 1]
is a probability matrix satisfying

∑

s′∈S P(s, s
′) ∈ {0, 1} for all s ∈ S, and

L : S → 2AP is a labeling function.

3 Hidden Markov Models

This section first recalls the concept of HMM, then defines belief states, paths
over HMM, and probability spaces for a given HMM.

3.1 Labeled Discrete-Time HMMs

An HMM [17] is a doubly embedded stochastic process with an underlying
stochastic process that is hidden, but can only be observed through another
set of stochastic processes that produce a sequence of observations. We add a la-
beling function to the standard definition of HMMs, in other words, we consider
an HMM as an extension of a labeled DTMC:

Definition 1 A labeled discrete-time HMM H is a tuple (S,P, L,Θ, µ, α) where
(S,P, L) is a labeled DTMC, Θ is a finite set of observations, µ : S×Θ −→ [0, 1]
is an observation function satisfying

∑

o∈Θ µ(s, o) = 1 ∀s ∈ S, and α is an initial

distribution on S such that
∑

s∈S α(s) = 1. ¤

The observation set Θ corresponds to the output of the model. By definition,
µ(s, ·) is a distribution on Θ, and µ(s, o) indicates the probability that the state
s produces the observation o. For the sake of brevity, we write µs(o) instead
of µ(s, o). The probability that the model starts with state s is α(s). In what
follows we use the term HMM to refer to a labeled discrete-time HMM. For
technical reasons, we assume there is no absorbing state in an HMM throughout
our discussion1.

3.2 Belief State

The observation depends stochastically and exclusively on the current state.
In general, the same observation could be emitted by several different states;
therefore, we are uncertain about the current state, but, we can summarize the
historical observations in a belief state (or information state) [12, 16] which is a
distribution over S. A belief state is not really a state of the HMM. Rather, it is a
way to describe what we know about the state, given the history of observations.
The set of all possible belief states is called the belief space, and is denoted by
B. We use St with St ∈ S to denote the state at time t, and Ot ∈ Θ to denote
the observation at time t. We write bt to denote the belief state at time t.

1 As indicated by Baier [2] (for concurrent probabilistic systems), this is a harmless
restriction since any system can be transformed into an “equivalent” system without
absorbing states. For an HMM H with absorbing states, we insert just a special state
† with a self-loop and transitions from any absorbing state in H to †.

.

100 L. Zhang, H. Hermanns, and D.N. Jansen

Definition 2 Let oi ∈ Θ where i = 0, . . . , t. The belief state bt at time t, is the
distribution over S at time t given the observation history o0, . . . , ot:

bt(s) = P (St = s|O0 = o0, . . . , O
t = ot,H) ∀s ∈ S ¤

Now given the historical observations o0, . . . , ot, the question is how to cal-
culate the belief state bn. The belief state at time 0 only depends on the initial
distribution and the first observation. The belief state at time t captures all of
our information about the past. As a result, we can inductively calculate the
current belief state bt based on the previous belief state bt−1 and the current
observation ot. This is illustrated in Figure 1.

s0 s1 s2 . . . st−1 st

o0 o1 o2 . . . ot−1 ot

α b0 b1 b2 . . . bt−1 bt

time: 0 1 2 . . . t− 1 t

hidden
states

obser-
vations

belief
states

Fig. 1. Updating belief states

We depict the states in gray circles to indicate that they are hidden. The
states together with the solid arrows between them represent the underlying
state evolvement. The dotted arrows between states and observations mean that
the observation ot is produced from the state st according to the observation
function µ. As a particular case, b0 is a function of o0 and the initial distribution

α. Applying the Bayesian rule and the definition of b0 we get: b0(s) =
α(s)µs(o0)

K0

where K0 is a normalizing constant with value
∑

s∈S α(s)µs(o0).
The dashed arrows, between the current observation ot, previous belief state

bt−1 and the current belief state bt, mean that bt depends on ot and bt−1 for all
t = 1, . . . , n. Again, applying the Bayesian rule and the definition of bt we have:

bt+1(s) =
∑

st∈S
bt(st)P(st,s)µs(ot+1)

Kt+1
where Kt+1 is a normalizing constant with

value:
∑

s∈S

(
∑

st∈S
bt(st)P(st, s)µs(ot+1)

)

. Hence, given the historical observa-
tions, we are able to calculate the current belief state.

3.3 Paths in HMM and Probability Spaces over Paths

Given H = (S,P, L,Θ, µ, α) , let si ∈ S and oi ∈ Θ for all i ∈ N. A path σ of H
is a sequence (s0, o0), (s1, o1) . . . ∈ (S × Θ)ω where µsi(oi) > 0,P(si, si+1) > 0
for all i ∈ N and (S × Θ)ω denotes the set of infinite sequences of elements of
S ×Θ.

.

Logic and Model Checking for Hidden Markov Models 101

For a path σ and i ∈ N, let σs[i] = si denote the (i + 1)st state of σ, and
σo[i] = oi denote the (i + 1)st observation of σ. Let σ[i] denote the suffix path
of σ starting with σs[i], i. e., (si, oi), (si+1, oi+1), Note that σ[0] = σ.

Let PathH denote the set of all paths in H, and PathH(s) denote the set of
paths in H that start in s. The superscript H is ommitted whenever convenient.
We define a probability space on paths of H using the standard cylinder con-
struction. For a path (s0, o0), (s1, o1), . . ., we define the basic cylinder set induced
by the prefix of this path as follows:

C((s0, o0), (s1, o1), . . . , (sn, on)) := {σ ∈ Path | ∀i ≤ n.σs[i] = si ∧ σo[i] = oi}

If it is clear from the context, we use just C to denote this cylinder set. C
consists of all paths σ starting with (s0, o0), (s1, o1), . . . (sn, on). Let Cyl contain
all sets C((s0, o0), . . . , (sn, on)) where s0, . . . , sn range over all state sequences
and o0, . . . , on range over all observation sequences. Let F be the σ-algebra on
Path generated by Cyl. Let i(s, s0) = 1 if s = s0, and i(s, s0) = 0 if s 6= s0. The
probability measure2 Prs on F is defined by induction on n by Prs(C(s0, o0)) =
i(s, s0)µs0(o0) and, for n > 0:

Prs(C((s0, o0), . . . , (sn, on)))

= Prs(C((s0, o0), . . . , (sn−1, on−1))) ·P(sn−1, sn)µsn(on)

By induction on n, we obtain:

Prs(C((s0, o0), . . . , (sn, on))) = i(s, s0)µs0(o0)
n
∏

i=1

P(si−1, si)µsi(oi) (1)

Lemma 3 Let s ∈ S. The triple (Path,F ,Prs) on domain Path is a probability

space, where F is the σ-algebra generated by the set of basic cylinder sets Cyl,
and Prs is the probability measure which is described by Equation 1. ¤

Let b ∈ B be a belief state, and C ∈ Cyl be a basic cylinder set. We extend
the probability measure with respect to a belief state b by: Prb(C) =

∑

s∈S b(s) ·
Prs(C). Similar to Lemma 3, the triple (Path,F ,Prb) on domain Path is also a
probability space.

4 The Logic POCTL∗

This section presents the branching-time temporal logic Probabilistic Observa-
tion CTL∗ (POCTL∗) which allows us to specify properties over HMMs. We have
indicated in the introduction that for an HMM, one wants to specify properties
over the underlying DTMC and in addition, one is also interested in reasoning

2 We define here actually a probability function Prs on the set Cyl. For F is a σ-algebra
generated by Cyl, this probability function can be extended to a unique probability
measure on F .

.

102 L. Zhang, H. Hermanns, and D.N. Jansen

about properties over the other set of stochastic processes which produce ob-
servations. The logic PCTL∗ is interpreted over DTMCs to express quantitative
stochastic properties [2, 7, 6]. We extend PCTL∗ to POCTL∗ such that the next
operator is equipped with an observation constraint. In this way we can state
properties over the observations, e.g., Xoφ means that the next observation is o
and the subsequent path satisfies φ.

POCTL∗ can be also considered as a variant of the temporal logic ACTL∗

introduced by De Nicola et al. [14]. ACTL∗ is interpreted over Labeled Transi-
tion Systems (LTS) and has been proven to have the same power as CTL∗. In
ACTL∗ the usual next operator is extended to interpret the labeled action of
the transition (e.g., Xaφ means the next transition is labeled with an action a
and the subsequent path satisfies φ).

4.1 Syntax of POCTL∗

Let H = (S,P, L,Θ, µ, α) be an HMM with o ∈ Θ. The syntax of the logic
POCTL∗ is defined as follows:

Φ := a | ¬Φ | Φ ∧ Φ | ε

φ := Φ | ¬φ | φ ∧ φ | Xoφ | φ U
≤n φ

ε := PEp(φ) | ¬ε | ε ∧ ε

where n ∈ N or n =∞, 0 ≤ p ≤ 1 and E∈ {≤, <,≥, >}. ¤

The syntax of POCTL∗ consists of state formula, path formula and belief
state formula. As in CTL∗, we use Φ, Ψ for state formula and φ, ψ for path
formula. The formula ε is called belief state formula. In HMMs, we are uncertain
about the current state, but we always know the current belief state. Therefore,
we want to know if some (probabilistic) properties are valid in belief states. We
consider the example in the introduction:

There is at least a 90 percent probability that the model produces a
sequence of observations O = (o0, o1, . . . , on).

This can be expressed by a belief state formula ε = P≥0.9(Xo0Xo1 . . .Xontt).
Intuitively, a belief state b satisfies ε if the probability measure w. r. t. b, i. e.,
Prb, of the set of paths satisfying Xo0Xo1 . . .Xontt meets the bound ≥ 0.9. In
Speech Recognition [13], we want to find out the most likely sentence given a
language and some acoustic input. For example, if we know that the HMM for
the word “Need” produces the acoustic observations with probability at least 0.9,
we can almost conclude that this acoustic input represents the word “Need”. We
indicate that this property cannot be expressed by any sublogics of POCTL∗

that we shall define later.
For the sake of simplicity, we do not consider the exist operator. The formula

∃φ is almost equivalent to the probability formula P>0φ. The standard (i. e.,
unbounded) until formula is obtained by taking n equal to ∞, i. e., φ U ψ =
φ U≤∞ ψ. We use the abbreviations ∧,3,2 which are defined in the same way
as for CTL∗. The timed variants of the temporal operators can be derived, e.g.,
3
≤nφ = tt U≤n φ, 2

≤nφ = ¬3
≤n¬φ.

Logic and Model Checking for Hidden Markov Models 103

4.2 Semantics of POCTL∗

Let H = (S,P, L,Θ, µ, α) be an HMM with s ∈ S and σ ∈ Path. The semantics
of POCTL∗ is defined by a satisfaction relation (denoted by |=) either between
a state s and a state formula Φ, or between a path σ and a path formula φ,
or between a belief state b and a belief state formula ε. We write H, s |= Φ,
H, σ |= φ and H, b |= ε if state s, path σ and belief state b satisfy state formula
Φ, path formula φ and belief state formula ε, respectively. If the model H is clear
from the context, we simply write s |= Φ, σ |= φ and b |= ε.

Let bs be the belief state with bs(s) = 1 and bs(s
′) = 0 for s′ 6= s. The

satisfaction relation |= is defined in Figure 2 where Prb{σ ∈ Path | σ |= φ}, or
Prb(φ) for short, denotes the probability measure of the set of all paths which
satisfy φ and start states weighted by b.

s |= a iff a ∈ L(s)

s |= ¬Φ iff s 6|= Φ

s |= Φ ∧ Ψ iff s |= Φ ∧ s |= Ψ

s |= ε iff bs |= ε

σ |= Φ iff σs[0] |= Φ

σ |= ¬φ iff σ 6|= φ

σ |= φ ∧ ψ iff σ |= φ ∧ σ |= ψ

σ |= Xoφ iff σo[0] = o ∧ σ[1] |= φ

σ |= φ U≤n
ψ iff ∃0 ≤ j ≤ n.(σ[j] |= ψ ∧ ∀i < j.σ[i] |= φ)

b |= PEp(φ) iff Prb{σ ∈ Path | σ |= φ} E p

b |= ¬ε iff b 6|= ε

b |= ε ∧ ε′ iff b |= ε ∧ b |= ε
′

Fig. 2. Semantics of POCTL∗

A path satisfies the new operator Xoφ if it starts with the observation o and
the suffix3 σ[1] satisfies φ. Let Ω be a set of observations, i. e., Ω ⊆ Θ. We use
the abbreviation XΩφ for

∨

o∈ΩXoφ to shorten our notations.

By the definition of XΩφ, we obviously have σ |= XΩφ iff σo[0] ∈ Ω ∧σ[1] |=
φ. The usual next operator can be described as Xφ ≡ XΘφ. Thus, the logic
PCTL∗ can be considered as a sublogic of POCTL∗.

3 This suffix σ[1] is well-defined for we have previously assumed that the model does
not contain any absorbing states.

4.3 The Sublogics

An LTL formula together with a bound (QLS formula) can be interpreted over
probabilistic models [2]. Recall that the logic PCTL∗ is a combination of PCTL

104 L. Zhang, H. Hermanns, and D.N. Jansen

and QLS. In PCTL, arbitrary combinations of state formulas are possible, but
the path formulas consists of only the next and until operators. The logic LTL al-
lows arbitrary combinations of path formulas but only propositional state formu-
las. This section introduces the sublogics POCTL, OLTL and QOS of POCTL∗.
They can also be considered as extensions of the logics PCTL, LTL and QLS
where the next operator is equipped with an observation (or a set of observa-
tions) constraint.

POCTL. We define the logic POCTL as a sublogic of POCTL∗ by imposing the
restriction on POCTL∗ formulas that every next and until operator (X,U≤n)
should be immediately enclosed in the probabilistic operator P. The syntax of
state and belief state formulas is the same as POCTL∗, and the path formulas
are given by:

φ := XΩΦ | Φ U
≤n Φ

where Ω ⊆ Θ.
Since we have Xφ ≡ XΘφ, the logic PCTL is naturally a sublogic of POCTL.

POCTL is a proper sublogic of POCTL∗. For example, we let a, a′ ∈ AP , then
the formulas P<p(XXa) and P<p(aU (Xa′)) are not valid POCTL formulas, but
are valid POCTL∗ formulas.

OLTL. In OLTL, we allow arbitrary combinations of path formulas, but only
propositional state formulas. Formally, OLTL formulas are the path formulas
defined by:

φ := a | ¬φ | φ ∧ φ | Xoφ | φ U
≤n φ

QOS. Now we extend QLS to QOS (quantitative OLTL specification) which
shall contribute to POCTL∗ model checking.

OLTL OCTL∗ OCTL

QOS POCTL∗ POCTL

Fig. 3. Relationship of the logic POCTL∗ and its sublogics

A QOS formula is a pair (φ,E p) where φ is an OLTL formula, E∈ {≤, <
,≥, >} and p ∈ [0, 1]. Let H = (S,P, L,Θ, µ, α) be an HMM with s ∈ S. The
semantics of the QOS formula is given by:

H, s |= (φ,E p)⇐⇒ Prs(φ) E p

Logic and Model Checking for Hidden Markov Models 105

4.4 Specifying Properties in POCTL∗

First, we indicate that we cannot calculate an exact probability by a POCTL∗

formula, however, we can specify a bound on the probability measure instead.
Actually, we do not need the exact values in most cases. To illustrate the ex-
pressiveness of POCTL∗, we consider following properties:

– The probability that the next observation is head and then the model goes
to state fair meets the bound < 0.2.

P<0.2(Xheadatfair)

This formula can be considered as a state formula or a belief state formula.
A state (belief state) satisfies this formula if the probability calculated using
the measure w. r. t. the state (belief state) meets the bound < 0.2.

– The probability is at most 0.05, that we eventually get an observation head
and then move to state fair , whereas at any moment before we are either in
state u1 or state u2.

P≤0.05((atu1
∨ atu2

) U Xheadatfair)

– With probability at least 0.9, the model generates the observation sequence
(o0, o1, . . . , on).

P≥0.9(Xo0Xo1 . . .Xontt)

– The probability that the state sequence (s0, s1, . . . , sn) produces the obser-
vation sequence (o0, o1, . . . , on) is at most 0.1.

P≤0.1(s0 ∧Xo0(s1 ∧Xo1(. . . (sn ∧Xontt) . . .)))

where s denotes the atomic proposition that the system is now in state s.

5 Model Checking

In this section, we present model checking algorithms for the logics POCTL∗,
POCTL and QOS. The model checking algorithm for POCTL∗ follows the same

The logics OCTL∗ and OCTL can be defined as extensions of CTL∗ and
CTL, in which the next operator is equipped with an observation, and a set
of observations respectively. The semantics of the sublogics are intuitively clear
from the interpretation of POCTL∗.

Relationship of POCTL∗ and Its Sublogics. Figure 3 shows an overview of the
relationship of the logic POCTL∗ and its sublogics. There is an arrow from a
logic A to another logic B if A is a proper sublogic of B. The logics in the upper
part can be considered as the probabilistic counterpart of the corresponding one
in the lower part.

106 L. Zhang, H. Hermanns, and D.N. Jansen

lines as the one for PCTL∗ [2, 7, 6]. It will first be reduced to the QOS model
checking problem. The latter can further be reduced to a probabilistic reacha-
bility analysis. To that end, we construct a Büchi automaton for a given OLTL
formula. The POCTL model checking algorithm can be adapted from the one
presented by Hansson & Jonsson [11].

5.1 POCTL∗ Formulas

Let H = (S,P, L,Θ, µ, α) be an HMM with s ∈ S, and Φ be a POCTL∗ formula.
The POCTL∗ model checking problem is to check whether H, s |= Φ (or s |= Φ

for short). The model checking algorithm for POCTL∗ is an adaption of the one
presented in [2] for PCTL∗.

The algorithm is based on a recursive procedure that computes the sets
Sat(Ψ) for all state subformulas Ψ of Φ. The cases where Ψ is an atomic propo-
sition or a negation or a conjunction is given by: Sat(a) = {s ∈ S | a ∈ L(s)},
Sat(¬Ψ1) = S\Sat(Ψ1) and Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2).

The case that Ψ is the probabilistic operator PEp(φ) is more involved. By
the semantics, it is equivalent to check whether Prbs(φ) meets the bound E p,
i. e., whether Prs(φ) E p. Let Ψ1, . . . , Ψk be the maximal state subformulas of φ.
The sets Sat(Ψi) can be calculated recursively. Then, we replace Ψ1, . . . , Ψk by
the new atomic propositions n1, . . . , nk and extend the label of state s by ni if
ni ∈ Sat(Ψi).

We replace the subformulas Ψ1, . . . , Ψk by new atomic propositions n1, . . . , nk.
The so obtained path formula φ′ is an OLTL formula, and obviously we have
Prs(φ) = Prs(φ

′). Now we apply the QOS model checking algorithm to calculate
Prs(φ

′), which will be discussed in Section 5.3. Hence, the complexity of the
POCTL∗ model checking algorithm is dominated by the one for QOS.

Belief State. Now, we show how to check whether a belief state b satisfies a belief
state formula ε, i. e., b |= ε. The most interesting case is ε = PEp(φ) where φ is
a POCTL∗ path formula. By definition,

b |= PEp(φ)⇐⇒ pb(φ) E p⇐⇒
∑

s∈S

b(s)Prs(φ) E p

therefore, it is sufficient to calculate Prs(φ) for all s ∈ S.

5.2 POCTL Formulas

Let H = (S,P, L,Θ, µ, α) with s ∈ S, and Φ be a POCTL formula. The algo-
rithm to check whether s |= Φ can be adapted from the one presented by Hansson
& Jonsson [11]. In case Φ is of the form a,¬Φ′, Φ1∧Φ2,P(Φ1U

≤nΦ2),P(Φ1UΦ2),
the set Sat(Φ) can be determined using the same strategy as for PCTL. Let
p ∈ [0, 1], Ω ⊆ Θ and E∈ {≤, <,≥, >}. We only need to consider the case that
φ = PEp(XΩΦ

′). We observe that

ps(XΩΦ
′) = µs(Ω) ·

∑

s′∈Sat(Φ′)

P(s, s′)

Logic and Model Checking for Hidden Markov Models 107

where µs(Ω) =
∑

o∈Ω µs(o) and the set Sat(Φ′) = {s ∈ S | s |= Φ′} can be
recursively evaluated. Thus, s |= PEp(XΩΦ

′) iff ps(XΩΦ
′) E p.

5.3 QOS Formulas

This section presents the model checking algorithm for QOS formulas. We in-
troduce two methods, an automaton based approach, which is based on the
algorithm introduced by Baier et al [2, 4], and a direct method, where we reduce
the problem to a PCTL∗ model checking problem over a DTMC, and apply the
efficient algorithm presented by Courcoubetis et al [7].

An automaton based approach. The input is H = (S,P, L,Θ, µ, α) with s ∈
S and a QOS formula (φ,E p) where p ∈ [0, 1]. We shall check whether H, s |=
(φ,E p). We first construct a Büchi automaton Aφ for φ. This construction is an
extension of the one presented by Gerth et al. [10] (for space reason, we present
it in [24, Appendix A]). By the result of Safra [18, 19], the Büchi automaton can
be translated to a deterministic Rabin automaton. Let Rφ = (Σ,Q, qin, δ, U)
denote the Rabin automaton for φ. (Note that Σ = P(AP)×Θ.) Next, we build
the product automaton H×Rφ. Finally, the problem to calculate the measure of
paths in PathH(s) satisfying φ is reduced to a probabilistic reachability analysis
in the product automaton. The method we shall present is an adaption of the one
introduced by Bianco & de Alfaro [4], where we follow the presentation in [2].

The product automaton H × Rφ = (S′,P′, L′) is given by: S′ = S × Q,
P′((s, q), (s′, q′)) = P(s, s′) · µs′(o) if q

′ ∈ δ(q, (L(s′), o)) and 0 otherwise.
For s ∈ S and o ∈ Θ, we define sR = (s, δ(qin, (L(s), o))). Let σ denote

the path (s0, o0), (s1, o1) . . . in H. Since Rφ is a deterministic automaton, we
define the unique induced path σR(s0, q0), (s1, q1), (s2, q2) . . . in H × Rφ, where
q0 = δ(qin, (L(s0), o0)), qi+1 = δ(qi, (L(si+1), oi+1)).

Theorem 4 Let P ′i = S×Pi and R
′
i = S×Ri. We define U ′ = ∪1≤j≤rU

′
j, where

U ′j is the largest subset of P ′j such that, for all u′ ∈ U ′j: reach
H×Rφ(u′) ⊆ U ′j

and reachH×Rφ(u′) ∩R′j 6= ∅. Then,

PrHs (φ) =
∑

o∈Θ

µs(o) · Pr
H×Rφ
sR

(reach(U ′))

where sR = (s, δ(qin, (L(s), o))), and PrHs (φ) = Prs{σ ∈ Path
H(s) | σ |= φ} and

reach(U ′) denote the set of path which can reach U ′, i. e. {σ′ ∈ PathH×Rφ(sR) |
∃i such that σ′[i] ∈ U ′}.

Proof. Let C((s, o0), (s1, o1), . . . , (sn, on)) be a basic cylinder set in H such that
every path σ in C satisfies φ. The measure of C is µs(o0)

∏n
i=1P(si−1, si)µsi(oi).

The induced unique cylinder set in H × Rφ is C′((s, q0), (s1, q1), . . . , (sn, qn))
where q0 = δ(qin, (L(s), o0)) and qi+1 = δ(qi, (L(si+1), oi+1)) for i = 1, . . . , n.
Obviously, σR is in C′. Since σ satisfies φ, the path π = qin, q0, . . . , qn, . . .

must be an accepting path. Hence, there exists an i such that inf(π) ⊆ Pi and

.

108 L. Zhang, H. Hermanns, and D.N. Jansen

inf(π)∩Ri 6= ∅. By the definition of U ′, σR must contain at least one state which
belongs to U ′.

By construction of H × Rφ, the measure of C′ is simply
∏n
i=1P(si−1, si)µsi(oi). Since C is an arbitrary cylinder set of interest,

the above result is true for all o0 ∈ Θ. Let C1, C2 be two different cylinder sets
in H. Obviously, either one cylinder set includes another, or they are disjoint.
Hence, summing up over all possible observations, we are done. ¤

Complexity. In [24, Appendix A] we show that the Büchi automaton for the
OLTL formula is exponential in the size of the formula. By the results of
Safra [18, 19], the deterministic Rabin automaton for φ is double exponential
in the size of the formula. So the overall complexity of the product automaton is
linear in the size of the model, and double exponential in the size of the formula.

It thus remains to compute the reachability probability PrH×RφsR
(reach(U ′))

in the product automaton. To obtain this quantity, we can apply the method
presented by de Alfaro [8, page 52]. The complexity is polynomial in the size of
the product automaton.

A direct approach. The main idea of this approach is to construct a DTMC
from the HMM, and transform the QOL formula φ to a QLS formula. Then, the
original problem can be reduced to DTMC model checking problem.

We extend the set of atomic propositions by AP ′ = AP ∪ {Ω | Ω ⊆ Θ}.
Given H = (S,P, L,Θ, µ, α) and a QOS formula (φ,E p), we define the DTMC
D = (S′,P′, L′) where S′ = S × Θ, P′((s, o), (s′, o′)) = P(s, s′) · µs′(o

′) and
L′(s, o) = L(s) ∪ {Ω ⊆ Θ | o ∈ Ω}. Furthermore, we define a QLS formula
(φ′,E p) as follows: Let XΩψ be a subformula of φ, we replace it by Ω ∧Xψ,
where Ω is a new atomic proposition. We proceed this process repeatedly until
there is no next formula indexed with observations.

Lemma 5 pHs (φ) =
∑

o∈Θ µs(o) · p
D
(s,o)(φ

′)

Proof. Similar to Lemma 4. ¤

Complexity. The constructed DTMC can be, in the worst case, O(|S|2|Θ|2). We
need still to calculate the probability measure of {σ ∈ PathD | σ |= φ′} in the
DTMC. The optimal algorithm for that is given by Courcoubetis et al [7], and
the complexity is polynomial in the size of the model, and exponential in the
size of the formula.

In comparison to the other method, this method is single exponential in the
size of the formula, but the DTMC suffers from the size O(|S|2|Θ|2).

5.4 Improving the Efficiency

In this section, we discuss some efficiency issues for some special POCTL∗ for-
mulas. After that we give some further improvements.

.

Logic and Model Checking for Hidden Markov Models 109

The Formula s0 ∧Xo0(s1 ∧Xo1(. . . (sn ∧Xontt) . . .)). For state s ∈ S, we let s
denote also the atomic propositions which asserts that the model resides in state
s. Given a basic cylinder set C((s0, o0), . . . , (sn, on)), we define a formula φ =
s0∧Xo0(s1∧Xo1(. . . (sn∧Xontt) . . .)) which is called the characteristic formula of
this basic cylinder set. Obviously, {σ ∈ Path | σ |= φ} = C((s0, o0), . . . , (sn, on)).
Hence, to check whether s |= PEp(φ) boils down to checking whether the prob-
ability measure of the basic cylinder set, i. e., Prs(C), meets the bound E p.

The Formula Xo0Xo1 . . .Xontt. We define a path formula φ = Xo0Xo1 . . .Xontt

given the cylinder set C(o0, . . . , on) = {σ ∈ Path | ∀i ≤ n.σo[i] = oi}. Obviously,
{σ ∈ Path | σ |= φ} = C(o0, . . . , on), which implies that to check whether α |=
PEp(φ) boils down to checking whether

∑

s∈S α(s) Prs(C) meets the bound E p.
The value Prs(C) can be calculated using Forward-Backward method presented
in [17], with complexity O(|S|2n).

Building the Automaton by Need. The set of states of the product automaton
contains all pairs (s, q) ∈ S×Q. In case Φ is a simple probabilistic operator, i. e.,
PEp(φ) where there is no probabilistic operator in φ, we only need the states
of the product automaton which are reachable from initial states sR. So in this
case we can construct the states of the product automaton as needed.

Reducing to POCTL Model Checking. Since the POCTL model checking algo-
rithm is more efficient, we can use it to deal with QOS formulas of the form
(φ U ψ,E p) (or (φ U≤n ψ,E p)) where φ and ψ are POCTL∗ path formulas
which can be verified recursively.

6 Conclusion and Future Work

6.1 Conclusion

In this paper, we have defined probability spaces (w. r. t. state and belief state)
for a given HMM. We have presented the temporal logic POCTL∗ with which
we can specify state-based, path-based and belief state-based properties over
HMMs. With POCTL∗ one can specify properties not only over the underlying
DTMC, but also over the set of processes producing observations. Finally, we
have focused on the POCTL∗ model checking algorithm. The most interesting
case is to deal with the probabilistic operator, and we have shown that this can
be reduced to QOS model checking. Then, the QOS model checking problem
is reduced to a probabilistic reachability analysis in the product automaton of
the HMM and a deterministic Rabin automaton. The complexity of our model
checking algorithm is polynomial in the size of the model and exponential in the
length of the formula.

6.2 Future Work

In this section, we consider some interesting directions for future work.

110 L. Zhang, H. Hermanns, and D.N. Jansen

(HMDP) [4, 8] where probabilistic and nondeterministic choices coexist. In an
HMM, a successor of a state s is selected probabilistically according to the
transition matrix. On the contrary, in an HMDP, for a state s, one first selects
a probabilistic distribution over actions nondeterministically. Then, a successor
can be chosen probabilistically according to the selected distribution over actions.

The nondeterminism is resolved by schedulers [3] (called strategy in [4, 8],
adversary in [2]). A scheduler η assigns a distribution over actions to a finite
sequence of states (history). Given a scheduler η, one can select a successor of
a state probabilistically, as in an HMM. Moreover, we can get a probability
measure [4] Prηs w. r. t. the scheduler η and a state s. Thus, the logic POCTL∗

can be extended to interpret properties over HMDPs in the following way:

s |= PEp(φ) iff ∀η.Prηs{σ ∈ Path
η | σ |= φ} E p

Since a belief state is a distribution over states, we can extend the probability
measure w. r. t. s and η to the one w. r. t. a belief state and η. The semantics
that a belief state satisfies a belief state formula can also be defined in a similar
way. The model checking algorithm can be adapted from the one presented by
de Alfaro for PCTL∗ formulas over MDPs.

HMDP with Fairness. Baier [2] extended the logic PCTL∗ to interpret properties
over concurrent probabilistic systems (similar to MDPs) with fairness assump-
tions. She also presented a PCTL∗ model checking algorithm over concurrent
probabilistic systems with fairness assumptions which is adapted from the one
by de Alfaro. It could be extended to a POCTL∗ model checking algorithm over
HMDPs with fairness assumptions.

Acknowledgements. The authors are grateful to Christel Baier (University of
Bonn) and Frits Vaandrager (Radboud University Nijmegen) for helpful com-
ments at an early state of the work presented in this paper.

References

1. Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. Discrete-time rewards
model-checked. In FORMATS, LNCS 2791:88-104. Springer, 2003.

2. C. Baier. On Algorithmic Verification Methods for Probabilistic Systems, 1998.
Habilitations- schrift zur Erlangung der venia legendi der Fakultät für Mathematik
and Informatik, Universität Mannheim.

3. C. Baier, B.R. Haverkort, H. Hermanns, and J.-P. Katoen. Efficient computation
of time-bounded reachability probabilities in uniformized continuous-time Markov
decision processes. In TACAS, LNCS 2988:61-76. Springer, 2004.

4. A. Bianco and L. de Alfaro. Model Checking of Probabilistic and Nondeterministic
Systems. In FSTTCS, LNCS 1026:499-513. Springer, 1995.

5. E. Birney. Hidden Markov models in biological sequence analysis. IBM Journal of

Research and Development, 45(3):449–454, 2001.

HMDP. We plan to extend an HMM to a Hidden Markov decision process

Logic and Model Checking for Hidden Markov Models 111

6. C. Courcoubetis and M. Yannakakis. Verifying Temporal Properties of Finite-
State Probabilistic Programs. In FOCS:338-345. IEEE Computer Society Press,
October 1988.

7. C. Courcoubetis and M. Yannakakis. The Complexity of Probabilistic Verification.
Journal of the ACM, 42(4):857–907, 1995.

8. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997. Technical report STAN-CS-TR-98-1601.

9. J.-M. François and G. Leduc. Mobility prediction’s influence on QoS in wireless
networks: A study on a call admission algorithm. In 3rd International Symposium

on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks, pages
238–247. IEEE Computer Society, 2005.

10. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-the-fly Automatic
Verification of Linear Temporal Logic. In PSTV 38:3-18. Chapman & Hall, 1995.

11. H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

12. M. Hauskrecht. Value-Function Approximations for Partially Observable Markov
Decision Processes. Journal of Artificial Intelligence Research, 13:33–94, 2000.

13. D. Jurafsky and J.H. Martin. Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall, 2000.

14. R. D. Nicola and F. W. Vaandrager. Action versus state based logics for transition
systems. In Semantics of Systems of Concurrent Processes, LNCS 469:407-419.
Springer, 1990.

15. P.A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. The
MIT Press, 2000.

16. P. Poupart. Approximate Value-Directed Belief State Monitoring for Partially
Observable Markov Decision Processes. Master’s thesis, University of British
Columbia, November 2000.

17. L.R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

18. S. Safra. On the complexity of ω-automata. In FOCS, pages 319–327, 1988.
19. S. Safra. Exponential determinization for ω-automata with strong-fairness accep-

tance condition. In STOC, pages 275–282, 1992.
20. K. Salamatian and S. Vaton. Hidden markov modeling for network communication

channels. In SIGMETRICS, pages 92–101. ACM Press, 2001.
21. M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic

Program Verification. In LICS, pages 332–345. IEEE Computer Society Press,
June 1986.

22. J. A. Vlontzos and S. Y. Kung. Hidden Markov models for character recognition.
IEEE Transactions on Image Processing, 1:539–543, October 1992.

23. P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about Infinite Computation
Paths. In FOCS ’83, pages 185–194. IEEE Computer Society Press, 1982.

24. L. Zhang, H. Hermanns, and D. N. Jansen. Logic and Model Checking for Hidden
Markov Chais. AVACS Technical Report No. 6, SFB/TR 14 AVACS, May 2005.
ISSN: 1860-9821, http://www.avacs.org.

112 L. Zhang, H. Hermanns, and D.N. Jansen

	Introduction
	Preliminaries
	Hidden Markov Models
	Labeled Discrete-Time HMMs
	Belief State
	Paths in HMM and Probability Spaces over Paths

	The Logic POCTL^*
	Syntax of POCTL^*
	Semantics of POCTL^*
	The Sublogics
	Specifying Properties in POCTL^*

	Model Checking
	POCTL^* Formulas
	POCTL Formulas
	QOS Formulas
	Improving the Efficiency

	Conclusion and Future Work
	Conclusion
	Future Work

	References

