
Abstract. Timed Statecharts, which can efficiently specify explicit dense time,
is an extension to the visual specification language Statecharts with real-time
constructs. We give a definition of timed Statecharts that specifies explicit tem-
poral behavior as timed automata does. It is very difficult to verify directly
whether timed Statecharts satisfies the required properties. However, by com-
piling it into timed automata, timed Statecharts may be checked using UPPAAL
tool. In the paper, the state of timed Statecharts is represented by inductive
term, and a step semantics of timed Statecharts is briefly described. The transla-
tion rules are shown by a compositional approach for formalizing the timed
Statecharts semantics directly on sequences of micro steps. Timed automata
corresponding to timed Statecharts was also discussed.

1 Introduction

Statecharts [1] is a visual language for specifying the behavior of complex reactive
system. The formalism extends traditional finite state machines with notions of hier-
archy, concurrency, and priority. In short, one can say: Statecharts = state-diagrams +
depth + orthogonality + broadcast-communication. Now there also exists many re-
lated specification formalisms such as Modecharts [2] and RSML [3]. Statecharts is
the most important UML component specifying complex reactive system such as
communication protocol and digital control unit.

Statecharts, a synchronous visual modeling language, adopts fictitious clock model
that only requires the sequence of integer times to be non-decreasing. All components
are driven by common global clocks, called tick clock. However, it is not sufficient to
specify time-critical systems with fictitious clock. Statecharts has to face the problems
that it can’t specify the required temporal behavior as timed automata does. In order
to efficiently specify explicit dense time, Statecharts is extended with real-time con-
structs, including clocks, timed guards and invariants. The advantages of modeling
complex reactive behavior with Statecharts are combined with the advantages of
specifying temporal behavior with timed automata, resulting in the real-time exten-
sion of Statecharts; we call it timed Statecharts.

Model checking [4] is an automatic technique for verifying finite state reactive sys-
tems. In order to verify whether a timed Statecharts model satisfies the required prop-

Model Checking for Timed Statecharts

Junyan Qian1,2 and Baowen Xu1

1 Department of Computer Science and Engineering,
Southeast University, Nanjing 210096, China

http://cse.seu.edu.cn/people/bwxu/
2 Department of Computer Science and Technology,

Guilin University of Electronic Technology, Guilin 541004, China
qjy@gliet.edu.cn, bwxu@seu.edu.cn

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 261 – 274, 2005.
© IFIP International Federation for Information Processing 2005

erties, we present a model checking algorithm for timed Statecharts. Just as verifying

Statecharts, we first flat timed Statecharts and then apply a model checking tool to
verify the resulting model. The translation rules that compile timed Statecharts into an
equivalence timed automata are discussed by a compositional approach which formal-
izes the timed Statecharts semantics directly on sequences of micro steps and de-
scribes parallel behavior by process algebra.

Relate work In the past two decades, model checking, which was first introduced for
ordinary finite-state machines in Clarke and Emerson [5], has emerged as a promising
and powerful approach to fully automatic verification of systems. Given a state
transition system and a property, model checking algorithms exhaustively explore the state
space to determine whether the system satisfies the property. The result is either a claim
that the property is true or else a counterexample failing to the property.

It was very successful for the Statecharts language to specify reactive systems by
its intuitive syntax and semantics. Since the original formalism of Harel, the theory of
Statecharts has been under an extensive research and many different semantic ap-
proaches evolved from the academic world [6][7][8][9][10][11]. But for timed State-
charts, only hierarchical timed automata with an operational semantic to analyze
timed Statecharts was discussed in [18][19].

Extended Hierarchical Automata, as the structural basis of Statecharts semantics,
were introduced in [12] for Statemate and in [13] for UML. It translates Statecharts
into PROMELA that is the input language of the SPIN model checker to perform the
verification. Gnesi [14] uses a formal operational semantics for building a labeled
transition system which is then used as a model to be checked against correctness
requirements expressed in the action based temporal logics ACTL. In their reference
verification environment JACK, automata are represented in a standard format, which
facilitates the use of different tools for automatic verification. Pap [15] describes
methods and tools for automated safety analysis of UML Statecharts specifications.
Chan [16] and Schmidt [17] also contribute to mode checking for Statecharts. David
[18] gives a formal verification of UML Statecharts with real-time extensions using
hierarchical timed automata, while our method is to translate directly timed State-
charts to flat timed automata that can be used in UPPAAL.

The remainder of this paper is organized as follows. The next section introduces
timed automata and its operational semantics, and section 3 defines timed Statecharts
and its terms. Section 4 formulates a step semantics. Section 5 formalizes our compo-
sitional semantics and gives our translation rules from timed Statecharts to timed
automata. Finally, section 6 provides our conclusions.

2 Timed Automata

Timed automaton [20] is an extended automaton to model the behavior of real time
system over time. We consider a variant of timed automata without accepting states.
The next subsection gives the operational semantics of the automata.

DEFINITION 1. (Clock) A clock is a variable ranging over R+, the set of non-
negative real numbers.

262 J. Qian and B. Xu

.

Let C be a finite set of variables called clocks. A clock valuation is a function that
assigns a non-negative real-value to every clock. The set of valuations of C, denoted

VC, is the set [C R+] of total mappings from C to R+. Let v VC and t R+, the clock
valuation v+t denotes that every clock is increased by t with respect to valuation v. It
is defined by (v+t)x=v(x)+t for every clock x C.

DEFINITION 2. (Clock constraints) For set C of clocks with x, y C, the set C of
clock constraints over C is defined by

 ::= x c | x y c | ¬ | ()

where c R+ and {<, }
Clock constraints are evaluated over clock valuations. For x, y C, v VC and let ,

C we have

 v x c iff v(x) c
 v x y c iff v(x) v(y) c
 v ¬ iff v
 v iff v and v

DEFINITION 3. (Timed automaton) A timed automaton is a tuple TA = (S, C, s0, L,
Inv,) where: S is a finite set of states, C a finite set of time clocks, s0 S an initial
state, L a set of labels, Inv: S C a function that associates a timing constraint to
each state, called state invariant, S (L C 2C {true, false}) S a set of transi-
tions, where a transition t=(s, e, g, r, u, s) connects a source state s and a target state
s with label e, timing constraint guard g, clock resets r and urgency flag u.

The function Inv associates a time constraint to each state s S, i.e., the automaton
can stay in the state only while the current time clock valuation satisfies Inv(s). The
state invariant forces the automaton to translate before it becomes false, so that it
avoids the automaton to get stuck at the state s. when the time constraint g associated
to the edge is satisfied by current values of time clocks, the automaton may perform a
translation.

The transition system underlying timed automaton TA, denoted M(TA), be defined
as (Q, q0,) where:

 Q={(s, v) S VC | v=Inv(s)};
 q0=(s0, v0) where v0(x)=0 for x C;
 The transition relation of timed automaton t Q (L C 2C {true, false}) Q,

which describes how to evolve from one state to another, is defined by the follow-
ing rules:
 (si, v) (s*

j, reset R in v) if the following conditions hold:
i. t =<si, E, A, G, R, u, j>;
ii. E are satisfied;
iii. v G;
iv. (reset R in v) Inv(sj);

 (si, v) (sd
i, v+d), for positive real d, if the following condition holds:

i. d d, v+d Inv(si);
ii. ¬urgent(t), the urgency flag of transition t is false.

Model Checking for Timed Statecharts 263

where clock valuation reset R in v, valuation v with clock x reset, is define by:

() if
()()

0 if 0
v y x y

x v y
x

reset in

3 Timed Statecharts

In this section we firstly define the formal syntax of timed Statecharts and give a
simple example of a timed Statecharts, and then represent timed Statecharts state not
visually but by terms. A timed Statecharts is in fact a Statecharts equipped with a set
of real-valued clocks. Clocks are used to precisely measure the elapse of time be-
tween events.

3.1 Timed Statecharts Definition

DEFINITION 4. (Time Statecharts) A timed Statecharts is an eight tuple TS=(N, N0, ,
type, C, I, L, T), where:

1. a finite set N of states.
2. a subset N0 N of initial states.
3. : N 2N, (n) gives the sub-states of n which are called sons of n, defines a

tree structure.
4. type: N {AND, OR, BASIC} is the type function.
5. a finite set C of clocks.
6. Inv: N C, a function that assigns to each state an invariant.
7. A set of transition labels L, partitioned into two disjoint sets L=LT LE, where

LT C 2C U represents a set of clock constraints label, where U={true, false} is
a set of urgency flag; and LE Event Cond Action a set of unclock constraints la-
bel, where Event is a set of event, Cond a set of condition, Action a set of action..

8. T N L N is a set of transition relation, where a transition t=(n, e, c, a, g, r, u, n)
connects two states n and n , and have a source state n, a target state n , a event e,
a condition c, a action a, a guard g, an clock resets r and an urgency flag u.
Properties of which assure the well-formed tree structure are:

 disjoint super-states: if n n then (n) (n)= ;
 no recursion: if n *(n) then n (n);
 root has no ancestor: n N, root (n);
 basic nodes are empty: type(n)=BASIC (n)= ;
 sub-states of AND are not BASIC: type(n)=AND n1 (n) (n1) ;
 if type(n)=AND then there is no n1 n2 for all n1, n2 (n);

A traditional Statecharts models the system as being in a number of states that de-
scribe its operations. A state can be considered a point in the computation. States are
denoted by rectangles with rounded corners and transitions as arrows. A state can be
BASIC, AND or OR. If a state is BASIC, it has no sub-states, called BASIC-state. An
OR-state has sub-states and exactly one of them is active at a certain point of time.

264 J. Qian and B. Xu

n4
x<5

n9

n8

n7

x>4

n1

n2 n3

n6

t1

a/b t2 a b/c

t3

b/c

n5
x>1

x>3

x>5

n1

n3

n4 n5 n7

n8 n9

n6

n2

Figure 1 shows a simple example of a timed Statecharts. The state labeled n1 is
split into two concurrent sub-states n2 and n3 by the dashed line through its middle. n1
is called an AND-state because it has these orthogonal components. n2 is decomposed
into sub-states labeled n4 and n5 to indicate that the model can be in only one of those
states at any time, so n2 is an OR-state. When a state is not decomposed into AND or
OR-states, it is called a BASIC state. The State n4 has the time invariant x<5, invariant
of the n5 is x>1(x denotes clocks), and the two States are connected by transition t1. In
the simple case transitions are connected directly with a source and a target state. The
transition t1 is triggered by event a and timed constraint x>3.

If a state is entered, one direct sub-state is entered in the OR case and all direct
sub-states are entered in the AND case. Exiting a state is analogous. AND, OR and
BASIC states form a tree structure and this hierarchy allows for stepwise refinement
of the behavior of complex systems. All states in the largest rounded corners rectan-
gle come into being a hierarchical structure as a tree that is shown Fig. 2. State n1 is
an ancestor of State n2 and n3, while State n2 and n3 is an offspring of State n1.

3.2 Statecharts Terms

For description convenience we assume that state and transition name of timed
Statecharts are unique, clock invariants of OR-state and AND-state are always true,
and also ignores interlevel transitions, i.e. transitions crossing borderlines of states.
Timed Statecharts is represent by terms, as done in [6]. Formally, suppose N be a set
of names for timed Statecharts states, T a set of names for timed Statecharts transi-
tions, a countable set of timed Statecharts events, G a set of clocks constraints, R a
set of clocks resets, an U={true, false} represent a set of urgent flag. Inv is a set of
invariant over timed Statecharts states. With every event e , we associate a negated
counterpart ¬e and ¬¬e=def e as well as ¬ E=def {¬e |e E} for E {¬e |e }. The set
SC of timed Statecharts terms is then defined by the following inductive rules.

BASIC-state: If n N, Inv, then s=[n,] is a timed Statecharts term.

An AND-state has OR sub-states, and all of them are active if the parent state is ac-
tive.

Model Checking for Timed Statecharts 265

Fig. 1. A simple example of a timed Statecharts Fig. 2. A state hierarchical structure

OR-state: Suppose n N, and that s1,…,sk are timed Statecharts terms for k>0, with
s =def (s1,…,sk). Also let =def {1,…,k} and l , with T T 2 2 G R U .
Then s = [n: s ;l;T] is a timed Statecharts term. Here s1,…,sk are the sub-states of s, set
T contains the transitions connecting these states, s1 is the default state of s, and sl is
the currently active sub-state of s.

AND-state: If n N, if s1,…,sk are timed Statecharts terms for k > 0, and s =def
(s1,…,sk), then s = [n: s] is a timed Statecharts term, where s1,…,sk are the parallel sub-
states of s.

s1 = [n1: (s1, s2)]
s2 = [n2: (s4, s5); 1; {t1, 1, {a}, {b}, 2}]
s3 = [n3: (s6, s7); 1; {t3, 1, {b}, {c}, 2}]
s6 = [n6: (s8, s9); 1; {t2, 1, {a ¬b}, {c}, 2}]
s4= [n4,x<5] s5=[n5,x>1] s7=[n7,x>4]
s8=[n8] s9=[n9]

Transitions of OR-states [n: s ;l;T] are those of the form =<t, i, E, A, G, R, u, j>,
where (i) t is the name of t̂ , name() =

t̂
t̂ def t , (ii) source() =t̂ def si is the source state

of , (iii) ev() =t̂ t̂ def E is the trigger of , (iv)act() =t̂ t̂ def A is the action of ,
(v)guard() =

t̂
t̂ def G is the clock constraints of , (vi) reset() =t̂ t̂ def R is the clock re-

sets of , (vii) urgent() =t̂ t̂ def u is the urgency flag of , and (viii) target() =t̂ t̂ def sj is
the target state of . The timed Statecharts term corresponding to the time Statecharts
depicted in Fig. 1 is term s

t̂
1, which is defined in Fig. 3.

4 A Step Semantics of Timed Statecharts

The transition relation of timed Statecharts T t̂ 2 2 G R U , which
describes how to evolve from one state to another, is defined by the following rules.

 (si,v) (s*
j, reset reset () in v) if the following conditions hold: t̂

i. =<t, i, E, A, G, R, u, j>; t̂
ii. ev() are satisfied; t̂
iii. guard() G; t̂
iv. (reset reset () in v) Inv(st̂ j);
v. act()are generated. t̂

 (si,v) (sd
i, v+d), for positive real d, if the following condition holds:

i. d d, v+d Inv(si);
ii. ¬urgent(), the urgency flag of transition is false. t̂ t̂

For BASIC-states of timed Statecharts, the transition relation is similar to the transi-
tion relation of timed automaton. However, in practice, we have to consider other prop-
erty for timed Statecharts, such as hierarchy, concurrency and priority. Before defining

266 J. Qian and B. Xu

Fig. 3. Statecharts terms

translation rules for timed Statecharts based on its operational semantics, we discuss
classical Statecharts semantics as proposed by Pnueli and Shalev [7].

We sketch the semantics of timed Statecharts terms adopted in [8], which is a
slight variant of the classical Statecharts operation semantics. A timed Statecharts s
reacts to the arrival of some external events by triggering and clock constraints en-
abled micro steps in a chain-reaction manner. When this chain reaction comes to a
halt, a complete macro step has been performed. More precisely, a macro step com-
prises a maximal set of micro steps, or transitions, that (i) are relevant, (ii) are mutu-
ally consistent, (iii) are triggered by events E offered by the environment or gen-
erated by other micro steps, (iv) satisfy clock constraints G G, (v) satisfy invariant of
target state, (vi) are mutually compatible, and (vii) obey the principle of causality.
Finally, we say that transition t is enabled in s s with respect to event set E, clock
constraints G and transition set T, if t En(s, E, G, T, s), s target(T), which is de-
fined as follows.

En(s, E, G, T) =def relevant(s) consistent(s, T) (¬invariant(s) (invariant(s)
urgent(T))) invariant(s) triggered(s,(E t T act(t)) G)

where:

 relevant(s) is the set of transitions whose source is in the set s;
 consistent(s, T) is the set of transitions that do not conflict with anything in T;
 invariant(s) represents that state s satisfy invariant;
 urgent(T) represents that the urgency flag of transition T is true;
 triggered(s,(E G) is the set of transitions whose triggers are satisfied by the

event set E and clock constraint G. This is where global in consistency is elimi-
nated;

 act(t) is the set of events generated by transition t.

Given a time Statecharts term s, a set E of events, and a set G of clock constraints,
the non-deterministic step-construction function presented in Fig. 4 computes a set T*
of transitions. By executing the transitions in T*, timed Statecharts term s may evolve
in the single macro step s s to timed Statecharts term s , producing the events
A = act(t) and clock reset R= reset(t). term s can be derived from s by
updating the index l in every OR-state [n:

,
,

E G
A R

*t T *t T

s ;l;T] of s satisfying t T* for some t T.

function step_construction(s, E);
var T:= ;
begin
 while T En(s,E,G,T) do
 choose t En(s,E,G,T)\T;
 T := T {t};
 od;
 return T
end

Model Checking for Timed Statecharts 267

Fig. 4. A step-construction function

5 Model Checking for Timed Statecharts

A macro step of Timed Statecharts comprises a maximal set of micro steps. We di-
rectly define the semantics on sequences of micro steps, and use timed automaton as
the semantics domain. Given a timed Statecharts TS, we translate TS to timed auto-
mata TA by a mapping : TS TA, where TA-states model timed Statecharts terms,
TA-labels describe unclock constraints labels LE(i.e. event/action) of timed State-
charts, TA-clocks denote timed Statecharts clocks, TA-clock constraints express
timed Statecharts clock constraints, TA-state invariants model timed Statecharts in-
variants, and TA-transitions is sequences of timed Statecharts micro steps.

For convenience, we define l ss =def (s1,…,sl-1,s ,sl+1,…, sk) for all 1 l k and s SC.
Furthermore, we need function default: SC SC which sets the default state for
given a Statecharts term s. default([n,])=def[n,], default([n: s ;l;T]) =def default(s1),
default([n: s]) =def 1 i k default(si). Defining for function : SC N, : SC Inv,
which sets the state and the invariant for given a Statecharts terms s. (i)

([n,])={{n}}, ([n,])={{ }}; (ii) ([n: s ;l;T])= 1 i k {{n} qi | qi (si)},
([n: s ;l;T])= {r1 i k i | ri (si)}; (iii) ([n: s])={{n} 1 i k qi | qi (si)},
([n: s])={ 1 i k ri | ri (si)}.

However, it is practical and important to consider history states in OR-states. For
recording a history state, we additionally define a flag of history state {none, deep,
shallow}. None means that history states are not considered. Deep means that the old
active state of the or-state and the old active states of all its sub-states are restored.
Shallow means that only the active state of the or-state is restored and that its sub-
states are reinitialized as usual. The modification of function default that just has to
replace function default(s) by function default(, s) is done by integrated a history
mechanism. The terms default(none, s) and default(deep, s) are simply defined by
default(s) and s, respectively. The definition of default(shallow, s) can be done along
the structure of timed Statecharts terms as follows.

default(shallow, [n,]) =def [n,]
default(shallow, [n: s ;l;T]) =def [n: [default ()]lls s ;l;T]
default(shallow, [n: s]) =def default(shallow, s)
Transition relation is defined by using SOS rules by Plotkin [21] as follows.

 ()

premisename
conclusion

side condition
 as well as ()

premisename side condition

conclusion

In this subsection, operational semantics of timed Statecharts transition in BASIC-
states, AND-states and OR-states was defined. There are three rules about BASIC-
states: BAS-1 rule describes the execution from one BASIC-state to another, where
source(t)=[n,], target(t)=[n ,], if the event ev(t), the clock constraints guard(t) of

5.1 Translation Rules for Time Statecharts Based on Operational Semantics

268 J. Qian and B. Xu

t T and the invariants of the target state are satisfied, the transition be enabled, and
the actions act(t) and the clock reset reset(t) are done.

ev(),guard()
act (),reset () name()

En([,], , , ,[,])
[,] [,]

,source() [,],
 target() [,],

(reset()) |

t t
t t t

n E G T n
n n

t T t n
t n

t v

BAS -1

reset in

BAS-2 rule describes the execution from one BASIC-state to one AND-state
which is its brother. As noted above, for all super states (i.e. OR-state and AND-
state), their state invariants are always true, but when an OR-state is entered, one
direct sub-state is entered, and until a BASIC-state. So we need to consider state
invariant which can get from function . BAS-2 rule defines as follows.

ev(),guard()
[default (,)]act (),reset () name()

En([,], , , ,[: ; ;])
[,] [: ; ;]

 , source() [,],
 target() [: ; ;],

(reset(

l

t t
l st t t

n E G T n s l T
n n s

t T t n
t n s l T

l T
BAS - 2

reset)) | ([: ; ;])t v n s l Tin

BAS-3 rule demonstrate the delay of BASIC-states, where v+d stands for the cur-
rent clock assignment plus the delay for all the clocks, we have

() | ([,]) urgent()
([,],) ([,],)

 , | ([,])

d

v d Inv n t
n v n v d

d d v d Inv n

BAS - 3

There are also three rules about OR-states: one rules describes the execution of a
timed Statecharts transition t T of an OR-state [n: s ;i;T]. It defines that the OR-state
with currently active sub-state si may change to OR-state [n: [default (,)]lls s ;l;T] with
currently active sub-state sl as rule OR-1.

ev(),guard()
[default (,)]act (),reset () name()

En([: ; ;], , , ,[: ; ;])
[: ; ;] [: ; ;]

 ,source() [: ; ;],
 target() [: ; ;],

(

l

t t
l st t t

n s i T E G T n s l T
n s i T n s l T

t T t n s i T
t n s l T

OR -1

re reset()) | ([: ; ;])t v n s l Tset in

Other rule that describes from the OR-state [n: s ;l;T] to BASIC-state, is not dis-
cussed particularly due to similar to BAS-1 rule. Another rule describes that the OR-
state [n: s ;l;T] with currently active sub-state sl may change with same label to the
OR-state [n: []ll ss ;l;T] with currently active sub-state ls as rule OR-2.

Model Checking for Timed Statecharts 269

It is indispensable for transition rule of Statecharts AND-states to consider many
enabled transitions to execute in parallel as rule AND. For AND-state’s parallel de-
scription, we firstly introduce process algebra. Process algebra [22] is a powerful
formal method for depicting algebra structure and analyzing parallel system. Basic
process algebra (BPA) is a core in all process algebra theory. Basic process terms are
built from atomic actions, alternative composition and sequential composition.

 An atomic action represents indivisible behavior, including event and action.
 The symbol · denotes sequential composition. The process term p q executes p,

and upon successful termination proceeds to execute q;
 The symbol + denotes alternative composition. The process term p+q executes

behavior of either p or q.

By appending merge ||, left merge and communication merge , BPA is extended
to express process communication in parallel system. The merge || executes the two
process terms in its arguments in parallel, the left merge executes an initial transi-
tion of its first argument, and the communication merge executes a communication
between initial transitions of its arguments. The process term p||q executes p and q in
parallel; analogously, p q executes restrictedly p in an initial transition; p q executes a
communication p and q.

AND-state of Statecharts specifies the parallel behavior of reactive system. In Fig.
1, the AND-state n1 comprises two concurrent sub-states n2 and n3. Suppose the state
configuration is currently in n4 and n8, if the event a and b occurs, the transition t1 and
t3 is enabled. Because transitions can be taken in the sub-states of an AND-state si-
multaneously, the transition t1 and t3 is executed in parallel, as written t1||t3. Based on
parallel axiom of process algebra, merge t1 || t3 = (t1 t3+ t3 t1) + t1 t3.

1

1

,
,

((\ ()))

1 |

(:)

(, : (ev()) act())

[:] [:] || ... || [:]

{1,..., }, {1,...,| |},

sou

m m

m m m

l

l j l
l H j l H

m m
m M m M m

m M

E G
m mA R L

i j

E act t G

MA R
L

m M s s

i j M t t

n s n s n s

M K k H M

|

AND

rce() , target()m m m mL s L s

When AND-state includes k OR sub-states, an execution of k transitions in parallel
need be considered. As above-mentioned, we can define AND rule, which an execu-
tion of |M| transitions in parallel in all sub-states sm of AND-state [n: s] may be
specified to [n: 1s]||…||[n: | |Ms] by merge of process algebra.

,
,

,
, []

[: ; ;] [: ; ;]
l

E G
l lA R L

E G
A R l sL

s s

n s l T n s l T
OR - 2

270 J. Qian and B. Xu

R1,…,Rm R, such that (i) s s1 1
1 1

,
,

E G
A R 1 2 2

2 2

,
, ...E G

A R
,
,

m m

m m

E G
A R sm s , (ii) E1

m
i i E and

A1
m
i i E= , (iii) A=act(sm) , (iv) 1

m
i Gi G, (v) (reset Ri in v) i, 0<i m, (vi)

sm+1, Em+1, Am+1, Gm+1, Rm+1, sm 1 1

1 1

,
,

m m

m m

E G
A R sm+1, where Em+1 E and Am+1 E= . If

timed Statecharts term s satisfies event E, clock constraints G, We may say, s may
evolve in the single macro step s s to timed Statecharts term s , generate ac-
tion A and reset clock R.

,
,

E G
A R

5.3 Translate Time Statecharts into Timed Automata

Given timed Statecharts, it can be translated into timed automata by a mapping :
TS TA. To define the mapping function , we firstly suppose a timed Statecharts p
by terms,, and define the entities S(p), C(p), L(p), p and Inv(p), which mean respec-
tively the states set, the clock set, the label set, the set of transition relation and the
state invariant function of TA (p), where:

 S(p) is a set of state configurations of Statecharts term p. The definition of S(p)
can be done as follows.
i. S([n,])={{ ([n,])}}={{n}}
ii. S([n: s ;l;T])= {{ ([n:1 i k s ;l;T])} qi | qi S(si)}
iii. S([n: s])={{ ([n: s])} 1 i k qi | qi S(si)}

 C(p)=C a set of the timed Statecharts clocks;
 L(p)= represents the set of timed Statecharts event and action, written

event/action;
2 p p 2 p

 p S(p)×L(p)×G×R×S(p) that operation rules have already been discussed in the
above, represent the sequence macro step of Statecharts. Assume a translation
e=(s, L, G, R, s) connects two states s and s , describes s s1 1

1 1

,
,

E G
A R 1 2 2

2 2

,
, ...E G

A R
s,

,
m m

m m

E G
A R m s , where L=E1 E2 … Em/A1 A2 … Am, G=G1 G2 … Gm,

R=R1 R2 … Rm;
 Inv(p): S(p) C, a function that assigns to each state an invariant, where

Inv([n,])= ([n,]), Inv([n: s ;i;T]) = ([n: s ;l;T]), Inv([n: s])= ([n: s])
 (p) expresses the initial term set of timed Statecharts. We may define

([n,])={n}, ([n: s ;i;T])={n} s1, ([n: s])={n} 1 i k si.

Considering our example of timed Statecharts of Fig. 1, its translation TA of timed
Statecharts is depicted in Figure 5.

5.2 Macro Step

The above rules realize a compositional semantics of timed Statecharts on sequences
of the micro steps. However, we consider even more the classical macro-step seman-
tics of timed Statecharts. Let s, s SC, E, A , G G and R R, we write s s and
say s may perform a macro step with input E, output A, clock constraints G and clock
reset R to s , if s1,…,sm SC, E1,…,Em ¬ , A1,…,Am , G1,…,Gm G,

Model Checking for Timed Statecharts 271

similar to [12] is lift interlevel transitions to the uppermost states that are exited and
entered when transitions is taken. Let sr(t) (called source restriction) is a set of states
which were the original states of the transition t, and td(t) (called target determinator)
is a set of states that were entered originally.

(n4,n8,x<5) a, x>3 (n5,n8,x>1)
b

a, b

(n5, n9,x>1)(n4,n9,x<5)

a, b

a, x>3

c

c

b

(n5,n7,x>4)

a, b, x>4
b,c

b, x>4
c

a, b, x>4
b,c

b, x>4
c

(n4,n7,4<x<5)

b, x>4 c

a, x>3
b

b, x>4
c

By transition label extensions added sr(t) and td(t), interlevel transitions can be
compiled into non-interlevel transitions.

In the following, we will describe how to eliminate clock invariants for super state
of timed Statecharts. Assume that two state of timed Statecharts n1, n2 N, n1 be a
super state, i.e. type(n1)=AND or type(n1)=OR, and n2 may be a arbitrary type, in-
cluding AND, OR and BASIC, and let n2 (n1). According to the priority of transi-
tions for timed Statecharts, we define the priority of state invariant that if sub-state n2
invariant is satisfied but father-state n1 invariant is not, then the current state configu-
ration can not be in n2, i.e. clock invariant of state n1 is prior to clock invariant of sub-
state n2. In order to let that clock invariants of OR-state and AND-state always are
true, only clock invariant of sub-states n2 need be updated such as
Inv(n2)=Inv(n2) Inv(n1). More precisely, we define formally as follows.
 n N, and type(n)=AND or type(n)=OR, Inv(n)=true;
 n N, n k(root), type(n)=BASIC, Inv(n)=Inv(n) 1 i k -i(n).

where root is a unique root state and has no ancestor. k(root)= (k-1(root)), -1 that
gives the father-state is a inverse of , and -k(n) = -1(-(k-1)(n)).

Given a timed Statecharts TS, and TCTL formulae , the model checking timed
Statecharts problem that we are interested in is to check whether TS satisfies , ab-
breviated TS |= . According to the last translation rules, the equivalence model TA

Without loss of generality, we wish to consider interlevel transitions and clock in-
variants of OR-state and AND-state for timed Statecharts. Harel considers interlevel
transitions as important concept of the language [1]: “…as our methods does not
necessarily advocate layer-by-layer development; it is more flexible and encourages
interlevel connections too, whenever appropriate.” Hence we can not rule them out.
This intricacy is mainly caused by interlevel transitions, but we wish to describe inter-
level transitions but have simple operational semantics. It is feasible and practical to
change from interlevel transitions to non-interlevel transitions. Our approach that is

5.4 Model Checking Timed Statecharts

272 J. Qian and B. Xu

Fig. 5. Translation Timed Automata for timed Statecharts in Fig. 1

2. The model checking problem for TCTL, deciding whether TA, s0|= , can be
solved by constructing the region automaton (TA) under the time equivalence
classes under ;

3. Apply the CTL model checking procedure on (TA).

Actually, the problem for model checking timed Statecharts can be converted to the
classical problem for model checking timed automata [23][24].

6 Conclusion

Timed Statecharts is an extension of the visual specification language Statecharts
with real-time constructs, and can efficiently specify explicit dense time. The timed
Statecharts serves better the modeling of complex reactive real-time systems. The
paper presented a new approach for formalizing timed Statecharts semantics, which is
centered on the compositional principle. Based on timed Statecharts term syntax and
formal operational semantics, and description of parallel behavior by process algebra,
each timed Statecharts is mapped to a timed automaton. This makes it possible to
translate our hierarchical structure to a flat one and thus provide a framework for
formal verification of a real-time extension of Statecharts.

References

1. Construct the flat timed automata model TA =(S, C, s0, L, Inv,);

that results from timed Statecharts TS is called its timed automata. Thus, roughly
speaking, model checking timed Statecharts against a TCTL-formula amounts to
model checking its timed automata against a TCTL-formula. Formally, for any timed
Statecharts TS, we have:

TS |= if and only if TA |=

In summary we obtain the scheme for model checking the TCTL-formula over
the timed Statecharts TS:

Model Checking for Timed Statecharts 273

1. D. Harel. Statecharts: a Visual Formalism for Complex Systems. Science of Computing,
8(1987) 231-274

2. F. Jahanian and A.K. Mok. A Graph-theoretic Approach for Timing Analysis and its
Imple-mentation. IEEE Transactions on Computers, C-36(1987) 961~975

3. Leveson NG, Heimdahl M, Hildreth H, Reese JD. Requirements Specification for Process-
Control Systems. IEEE Transactions on Software Engineering, 20(1994) 684~707

4. E.M. Clarke, O. Grumberg, D.A. Peled. Model Checking. The MIT Press (2000)
5. E. M. Clarke, E. A. Emerson. Synthesis of synchronization skeletons for branching time

temporal logic. In Logic of Programs: Workshop, Yorktown Heights. NY, LNCS 131,
Springer-Verlag, (1981) 52-71

6. D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the Formal Semantics of
Statecharts. In Proceedings of the 2nd IEEE symposium on Logic in Computer science,
Ithaca, New York, (1987) 54-64

274 J. Qian and B. Xu

7. G. Lüttgen, M. von der Beeck, and R. Cleaveland. Statecharts via Process Algebra. In 10th

International Conference on Concurrency Theory(CONCUR '99), J. Baeten and S. Mauw,
eds., Vol. 1664 of Lecture Notes in Computer Science, Eindhoven, The Netherlands,
Springer-Verlag (1999) 399-414

8. A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences of Statecharts. In 7th Interna-
tional Conference on Concurrency Theory (CONCUR '96), U. Montanari and V. Sassone,
eds., Vol. 1119 of Lecture Notes in Computer Science, Pisa, Italy, Springer-Verlag (1996)
687-702

9. R. Heckel, J. Kuster, and G. Taentaer. Towards Automatic Translation of UML Models
into Semantic Domains. In Proc. AGT 2002: Workshop on Applied Graph Transformation,
Grenoble, France, (2002) 11-21

10. G. Lüttgen, M. von der Beeck, and R. Cleaveland. A Compositional Approach to State-
charts Semantics. NASA/CR-2000-2100086, ICASE Report No. 2000-12 (2000)

11. A. Pnueli and M. Shalev. What is in a Step: on the Semantics of Statecharts. In Theoretical
Aspects of Computer Software (TACS '91), T. Ito and A. Meyer, eds., Vol. 526 of Lecture
Notes in Computer Science, Sendai, Japan, Springer-Verlag (1991) 244-264

12. E. Mikk, Y. Lakhnech, and M. Siegel et al. Implementing Statecharts in PROMELA/SPIN.
In: Proc of Workshop on Industrial-Strength Formal Specification Techniques(WIFT'98).
BocaRaton, Florida: IEEE Computer Society (1998)

13. D. Latella, I. Majzik, and M. Massink. Automatic Verification of UML Statechat Diagrams
Using the SPIN Model-checker. Formal Aspects of Computing, 11(1999): 637-664.

14. S. Gnesi, and D. Latella. Model Checking UML Statechart Diagrams Using JACK. In Pro-
ceedings of the 4th IEEE international Symposium on High-Assurance Systems
Engineering (1999) 46-55

15. Z. Pap, I. Majzik, and A. Pataricza. Checking General Safety Criteria on UML Statecharts.
In U. Voges, editor, SAFECOMP 2001, LNCS 2187, Springer-Verlag, (2001) 46-55

16. W. Chan, R. Anderson, P. Beame, and S. Burns et al. Model Checking Large Software
Specifications. IEEE Transactions on Software Engineering, 24(1998) 498-520

17. A. Schmidt and D. Varro. CheckVML: A Tool for Model Checking Visual Modeling Lan-
guages. In the 6th International Conference on the Unified Modeling Language, LNCS
2863, Springer-Verlag, (2003) 92-95.

18. A. David, M. Oliver Möller, and Wang Yi. Formal Verification of UML Statecharts with
Real-Time Extensions. In Proceedings of the 5th International Conference on Fundamental
Approaches to Software Engineering, Vol. 2306 of Lecture Notes in Computer Science,
Springer-Verlag, (2002) 218-232

19. H. Giese and S. Burmester. Real-Time Statechart Semantics. Technical Report tr-ri-03-
239, Computer Science Department, University of Paderborn, (2003)

20. R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(1994) 183-235.

21. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, (1981)

22. W. Fokkink. Introduction to Process Algebra. Springer, (2000)
23. R. Alur, C. Courcoubetis and D. Dill. Model Checking in Dense Real-time. Information

and Computation, 104(1993) 2-34
24. S. Yovine. Model Checking Timed Automata. In Embedded Systems, LNCS, 1494, (1998)

	Introduction
	Timed Automata
	Timed Statecharts
	Timed Statecharts Definition
	Statecharts Terms

	A Step Semantics of Timed Statecharts
	Model Checking for Timed Statecharts
	Translation Rules for Time Statecharts Based on Operational Semantics
	Macro Step
	Translate Time Statecharts into Timed Automata
	Model Checking Timed Statecharts

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

