
Abstract. Timed Statecharts, which can efficiently specify explicit dense time, 
is an extension to the visual specification language Statecharts with real-time 
constructs. We give a definition of timed Statecharts that specifies explicit tem-
poral behavior as timed automata does. It is very difficult to verify directly 
whether timed Statecharts satisfies the required properties. However, by com-
piling it into timed automata, timed Statecharts may be checked using UPPAAL 
tool. In the paper, the state of timed Statecharts is represented by inductive 
term, and a step semantics of timed Statecharts is briefly described. The transla-
tion rules are shown by a compositional approach for formalizing the timed 
Statecharts semantics directly on sequences of micro steps. Timed automata 
corresponding to timed Statecharts was also discussed. 

1   Introduction 

Statecharts [1] is a visual language for specifying the behavior of complex reactive 
system. The formalism extends traditional finite state machines with notions of hier-
archy, concurrency, and priority. In short, one can say: Statecharts = state-diagrams + 
depth + orthogonality + broadcast-communication. Now there also exists many re-
lated specification formalisms such as Modecharts [2] and RSML [3]. Statecharts is 
the most important UML component specifying complex reactive system such as 
communication protocol and digital control unit. 

Statecharts, a synchronous visual modeling language, adopts fictitious clock model 
that only requires the sequence of integer times to be non-decreasing. All components 
are driven by common global clocks, called tick clock. However, it is not sufficient to 
specify time-critical systems with fictitious clock. Statecharts has to face the problems 
that it can’t specify the required temporal behavior as timed automata does. In order 
to efficiently specify explicit dense time, Statecharts is extended with real-time con-
structs, including clocks, timed guards and invariants. The advantages of modeling 
complex reactive behavior with Statecharts are combined with the advantages of 
specifying temporal behavior with timed automata, resulting in the real-time exten-
sion of Statecharts; we call it timed Statecharts. 

 

Model checking [4] is an automatic technique for verifying finite state reactive sys-
tems. In order to verify whether a timed Statecharts model satisfies the required prop-
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erties, we present a model checking algorithm for timed Statecharts. Just as verifying 



Statecharts, we first flat timed Statecharts and then apply a model checking tool to 
verify the resulting model. The translation rules that compile timed Statecharts into an 
equivalence timed automata are discussed by a compositional approach which formal-
izes the timed Statecharts semantics directly on sequences of micro steps and de-
scribes parallel behavior by process algebra. 

Relate work In the past two decades, model checking, which was first introduced for 
ordinary finite-state machines in Clarke and Emerson [5], has emerged as a promising 
and powerful approach to fully automatic verification of systems. Given a state 
transition system and a property, model checking algorithms exhaustively explore the state 
space to determine whether the system satisfies the property. The result is either a claim 
that the property is true or else a counterexample failing to the property. 

It was very successful for the Statecharts language to specify reactive systems by 
its intuitive syntax and semantics. Since the original formalism of Harel, the theory of 
Statecharts has been under an extensive research and many different semantic ap-
proaches evolved from the academic world [6][7][8][9][10][11]. But for timed State-
charts, only hierarchical timed automata with an operational semantic to analyze 
timed Statecharts was discussed in [18][19]. 

Extended Hierarchical Automata, as the structural basis of Statecharts semantics, 
were introduced in [12] for Statemate and in [13] for UML. It translates Statecharts 
into PROMELA that is the input language of the SPIN model checker to perform the 
verification. Gnesi [14] uses a formal operational semantics for building a labeled 
transition system which is then used as a model to be checked against correctness 
requirements expressed in the action based temporal logics ACTL. In their reference 
verification environment JACK, automata are represented in a standard format, which 
facilitates the use of different tools for automatic verification. Pap [15] describes 
methods and tools for automated safety analysis of UML Statecharts specifications. 
Chan [16] and Schmidt [17] also contribute to mode checking for Statecharts. David 
[18] gives a formal verification of UML Statecharts with real-time extensions using 
hierarchical timed automata, while our method is to translate directly timed State-
charts to flat timed automata that can be used in UPPAAL.  

The remainder of this paper is organized as follows. The next section introduces 
timed automata and its operational semantics, and section 3 defines timed Statecharts 
and its terms. Section 4 formulates a step semantics. Section 5 formalizes our compo-
sitional semantics and gives our translation rules from timed Statecharts to timed 
automata. Finally, section 6 provides our conclusions. 

2 Timed Automata 

Timed automaton [20] is an extended automaton to model the behavior of real time 
system over time. We consider a variant of timed automata without accepting states. 
The next subsection gives the operational semantics of the automata.  

DEFINITION 1. (Clock) A  clock is a variable  ranging over R+,  the set of non-
negative real numbers. 
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Let C be a finite set of variables called clocks. A clock valuation is a function that 
assigns a non-negative real-value to every clock. The set of valuations of C, denoted 



VC, is the set [C R+] of total mappings from C to R+. Let v VC and t R+, the clock 
valuation v+t denotes that every clock is increased by t with respect to valuation v. It 
is defined by (v+t)x=v(x)+t for every clock x C. 

DEFINITION 2. (Clock constraints) For set C of clocks with x, y C, the set C  of 
clock constraints over C is defined by 

 ::= x c | x y c | ¬   | (  ) 

where c R+ and {<, } 
Clock constraints are evaluated over clock valuations. For x, y C, v VC and let , 

C we have 

 v   x  c            iff  v(x) c 
 v   x y  c        iff  v(x) v(y) c 
 v ¬                    iff  v  
 v                 iff  v  and v  

DEFINITION 3.  (Timed automaton) A  timed automaton  is a tuple TA = (S, C, s0, L, 
Inv, ) where: S is a finite set of states, C a finite set of time clocks, s0 S an initial 
state, L a set of labels, Inv: S C a function that associates a timing constraint to 
each state, called state invariant, S (L C 2C {true, false}) S a set of transi-
tions, where a transition t=(s, e, g, r, u, s ) connects a source state s and a target state 
s  with label e, timing constraint guard g, clock resets r and urgency flag u. 

The function Inv associates a time constraint to each state s S, i.e., the automaton 
can stay in the state only while the current time clock valuation satisfies Inv(s). The 
state invariant forces the automaton to translate before it becomes false, so that it 
avoids the automaton to get stuck at the state s. when the time constraint g associated 
to the edge is satisfied by current values of time clocks, the automaton may perform a 
translation.  

The transition system underlying timed automaton TA, denoted M(TA), be defined 
as (Q, q0, ) where: 

 Q={(s, v) S VC | v=Inv(s)}; 
 q0=(s0, v0) where v0(x)=0 for x C; 
 The transition relation of timed automaton t Q (L C 2C {true, false}) Q, 

which describes how to evolve from one state to another, is defined by the follow-
ing rules: 
 (si, v)  (s*

j, reset R in v) if the following conditions hold: 
i. t =<si, E, A, G, R, u, j>; 
ii. E are satisfied; 
iii. v  G;  
iv. (reset R in v)  Inv(sj); 

 (si, v) (sd
i, v+d), for positive real d, if the following condition holds: 

i. d d, v+d   Inv(si); 
ii. ¬urgent(t), the urgency flag of transition t  is false. 
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where clock valuation reset R in v, valuation v with clock x reset, is define by: 

( )    if  
(    )( )

0         if  0
v y x y

x v y
x

reset in  

3   Timed Statecharts 

In this section we firstly define the formal syntax of timed Statecharts and give a 
simple example of a timed Statecharts, and then represent timed Statecharts state not 
visually but by terms. A timed Statecharts is in fact a Statecharts equipped with a set 
of real-valued clocks. Clocks are used to precisely measure the elapse of time be-
tween events. 

3.1  Timed Statecharts Definition  

DEFINITION 4. (Time Statecharts) A timed Statecharts is an eight tuple TS=(N, N0, , 
type, C, I, L, T), where: 

1. a finite set N of states. 
2. a subset N0 N of initial states. 
3.  : N 2N, (n) gives the sub-states of n which are called sons of n,  defines a 

tree structure. 
4. type: N {AND, OR, BASIC} is the type function. 
5. a finite set C of clocks. 
6. Inv: N C, a function that assigns to each state an invariant. 
7. A set of transition labels L, partitioned into two disjoint sets L=LT LE, where 

LT C 2C U represents a set of clock constraints label, where U={true, false} is 
a set of urgency flag; and LE Event Cond Action a set of unclock constraints la-
bel, where Event is a set of event, Cond a set of condition, Action a set of action.. 

8. T N L N is a set of transition relation, where a transition t=(n, e, c, a, g, r, u, n ) 
connects two states n and n , and have a source state n, a target state n , a event e, 
a condition c, a action a, a guard g, an clock resets r and an urgency flag u.  
Properties of  which assure the well-formed tree structure are: 

 disjoint super-states: if n  n  then (n) (n )= ; 
 no recursion: if n *(n) then n (n ); 
 root has no ancestor: n N, root (n); 
 basic nodes are empty: type(n)=BASIC (n)= ; 
 sub-states of AND are not BASIC: type(n)=AND  n1 (n) ( n1) ; 
 if type(n)=AND then there is no n1  n2 for all n1, n2 (n); 

A traditional Statecharts models the system as being in a number of states that de-
scribe its operations. A state can be considered a point in the computation. States are 
denoted by rectangles with rounded corners and transitions as arrows. A state can be 
BASIC, AND or OR. If a state is BASIC, it has no sub-states, called BASIC-state. An 
OR-state has sub-states and exactly one of them is active at a certain point of time. 

264 J. Qian and B. Xu 
 



n4
x<5

n9

n8

n7

x>4

n1

n2 n3

n6

t1

a/b t2 a   b/c

t3

b/c

n5
x>1

x>3

x>5

           

n1

n3

n4 n5 n7

n8 n9

n6

n2

 

Figure 1 shows a simple example of a timed Statecharts. The state labeled n1 is 
split into two concurrent sub-states n2 and n3 by the dashed line through its middle. n1 
is called an AND-state because it has these orthogonal components. n2 is decomposed 
into sub-states labeled n4 and n5  to indicate that the model can be in only one of those 
states at any time, so n2 is an OR-state. When a state is not decomposed into AND or 
OR-states, it is called a BASIC state. The State n4 has the time invariant x<5, invariant 
of the n5 is x>1(x denotes clocks), and the two States are connected by transition t1. In 
the simple case transitions are connected directly with a source and a target state. The 
transition t1 is triggered by event a and timed constraint x>3. 

If a state is entered, one direct sub-state is entered in the OR case and all direct 
sub-states are entered in the AND case. Exiting a state is analogous. AND, OR and 
BASIC states form a tree structure and this hierarchy allows for stepwise refinement 
of the behavior of complex systems. All states in the largest rounded corners rectan-
gle come into being a hierarchical structure as a tree that is shown Fig. 2. State n1 is 
an ancestor of State n2 and n3, while State n2 and n3 is an offspring of State n1. 

3.2  Statecharts Terms 

For description  convenience  we  assume that  state  and transition name of timed 
Statecharts are unique, clock invariants of OR-state and AND-state are always true, 
and also ignores interlevel transitions, i.e. transitions crossing borderlines of states. 
Timed Statecharts is represent by terms, as done in [6]. Formally, suppose N be a set 
of names for timed Statecharts states, T  a set of names for timed Statecharts transi-
tions,  a countable set of timed Statecharts events, G a set of clocks constraints, R a 
set of clocks resets, an U={true, false} represent a set of urgent flag. Inv is a set of 
invariant over timed Statecharts states. With every event e , we associate a negated 
counterpart ¬e and ¬¬e=def e as well as ¬ E=def {¬e |e E} for E {¬e |e }. The set 
SC of timed Statecharts terms is then defined by the following inductive rules. 

BASIC-state: If n N, Inv, then s=[n, ] is a timed Statecharts term. 

An AND-state has OR sub-states, and all of them are active if the parent state is ac-
tive.  
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Fig. 1. A simple example of a timed Statecharts       Fig. 2. A state hierarchical structure  



 

OR-state: Suppose n N, and that s1,…,sk are timed Statecharts terms for k>0, with 
s =def (s1,…,sk). Also let  =def {1,…,k} and l , with T T 2 2 G R U . 
Then s = [n: s ;l;T] is a timed Statecharts term. Here s1,…,sk are the sub-states of s, set 
T contains the transitions connecting these states, s1 is the default state of s, and sl is 
the currently active sub-state of s. 

AND-state: If n N, if s1,…,sk are timed Statecharts terms for k > 0, and s =def 
(s1,…,sk), then s = [n: s ] is a timed Statecharts term, where s1,…,sk are the parallel sub-
states of s. 

s1 = [n1: (s1, s2)] 
s2 = [n2: (s4, s5); 1; {t1, 1, {a}, {b}, 2}] 
s3 = [n3: (s6, s7); 1; {t3, 1, {b}, {c}, 2}] 
s6 = [n6: (s8, s9); 1; {t2, 1, {a ¬b}, {c}, 2}]
s4= [n4,x<5] s5=[n5,x>1]  s7=[n7,x>4]  
s8=[n8] s9=[n9] 

 

Transitions of OR-states [n: s ;l;T] are those of the form =<t, i, E, A, G, R, u, j>, 
where (i) t is the name of t̂ , name( ) =

t̂
t̂ def t , (ii) source( ) =t̂ def  si is the source state 

of , (iii) ev( ) =t̂ t̂ def E is the trigger of , (iv)act( ) =t̂ t̂ def A is the action of , 
(v)guard( ) =

t̂
t̂ def G is the clock constraints of , (vi) reset( ) =t̂ t̂ def R is the clock re-

sets of , (vii) urgent( ) =t̂ t̂ def u is the urgency flag of , and (viii) target( ) =t̂ t̂ def sj is 
the target state of . The timed Statecharts term corresponding to the time Statecharts 
depicted in Fig. 1 is term s

t̂
1, which is defined in Fig. 3. 

4   A Step Semantics of Timed Statecharts 

The  transition  relation  of  timed  Statecharts T  t̂ 2 2 G R U , which 
describes how to evolve from one state to another, is defined by the following rules. 

 (si,v)  ( s*
j, reset reset ( ) in v) if the following conditions hold: t̂

i. =<t, i, E, A, G, R, u, j>; t̂
ii. ev( ) are satisfied; t̂
iii. guard( )  G;  t̂
iv. (reset reset ( ) in v)  Inv(st̂ j); 
v. act( )are generated. t̂

 (si,v) (sd
i, v+d), for positive real d, if the following condition holds: 

i. d d, v+d   Inv(si); 
ii. ¬urgent( ), the urgency flag of transition  is false. t̂ t̂

For BASIC-states of timed Statecharts, the transition relation is similar to the transi-
tion relation of timed automaton. However, in practice, we have to consider other prop-
erty for timed Statecharts, such as hierarchy, concurrency and priority. Before defining 
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Fig. 3. Statecharts terms 



 

translation rules for timed Statecharts based on its operational semantics, we discuss 
classical Statecharts semantics as proposed by Pnueli and Shalev [7]. 

We sketch the semantics of timed Statecharts terms adopted in [8], which is a 
slight variant of the classical Statecharts operation semantics. A timed Statecharts s 
reacts to the arrival of some external events by triggering and clock constraints en-
abled micro steps in a chain-reaction manner. When this chain reaction comes to a 
halt, a complete macro step has been performed. More precisely, a macro step com-
prises a maximal set of micro steps, or transitions, that (i) are relevant, (ii) are mutu-
ally consistent, (iii) are triggered by events E  offered by the environment or gen-
erated by other micro steps, (iv) satisfy clock constraints G G, (v) satisfy invariant of 
target state, (vi) are mutually compatible, and (vii) obey the principle of causality. 
Finally, we say that transition t is enabled in s s  with respect to event set E, clock 
constraints G and transition set T, if t En(s, E, G, T, s ), s target(T), which is de-
fined as follows. 

En(s, E, G, T) =def relevant(s) consistent(s, T) (¬invariant(s) (invariant(s) 
urgent(T))) invariant(s ) triggered(s,(E t T act(t)) G)  

where:  

 relevant(s) is the set of transitions whose source is in the set s; 
 consistent(s, T) is the set of transitions that do not conflict with anything in T; 
 invariant(s) represents that state s satisfy invariant; 
 urgent(T) represents that the urgency flag of transition T is true; 
 triggered(s,(E G) is the set of transitions whose triggers are satisfied by the 

event set E and clock constraint G. This is where global in consistency is elimi-
nated; 

 act(t) is the set of events generated by transition t. 

Given a time Statecharts term s, a set E of events, and a set G of clock constraints, 
the non-deterministic step-construction function presented in Fig. 4 computes a set T* 
of transitions. By executing the transitions in T*, timed Statecharts term s may evolve 
in the single macro step s s  to timed Statecharts term s , producing the events 
A = act(t) and clock reset R= reset(t). term s  can be derived from s by 
updating the index l in every OR-state [n:

,
,

E G
A R

*t T *t T

s ;l;T] of s satisfying t T* for some t T. 

function step_construction(s, E); 
var T:= ; 
begin 
  while T En(s,E,G,T) do 
     choose  t En(s,E,G,T)\T; 
     T := T {t}; 
  od; 
  return T 
end 
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Fig. 4. A step-construction function 

 



 

5   Model Checking for Timed Statecharts 

A macro step of Timed Statecharts comprises a maximal set of micro steps. We di-
rectly define the semantics on sequences of micro steps, and use timed automaton as 
the semantics domain. Given a timed Statecharts TS, we translate TS to timed auto-
mata TA by a mapping : TS TA, where TA-states model timed Statecharts terms, 
TA-labels describe unclock constraints labels LE(i.e. event/action) of timed State-
charts, TA-clocks denote timed Statecharts clocks, TA-clock constraints express 
timed Statecharts clock constraints, TA-state invariants model timed Statecharts in-
variants, and TA-transitions is sequences of timed Statecharts micro steps. 

For convenience, we define l ss =def (s1,…,sl-1,s ,sl+1,…, sk) for all 1 l k and s SC. 
Furthermore, we need function default: SC SC which sets the default state for 
given a Statecharts term s. default([n, ])=def[n, ], default([n: s ;l;T]) =def default(s1), 
default([n: s ]) =def 1 i k default(si). Defining for function : SC N, : SC Inv, 
which sets the state and the invariant for given a Statecharts terms s. (i) 

([n, ])={{n}}, ([n, ])={{ }}; (ii) ([n: s ;l;T])= 1 i k {{n} qi | qi (si)}, 
([n: s ;l;T])= {r1 i k i | ri (si)}; (iii) ([n: s ])={{n} 1 i k qi | qi (si)}, 
([n: s ])={ 1 i k ri | ri (si)}. 

However, it is practical and important to consider history states in OR-states. For 
recording a history state, we additionally define a flag of history state {none, deep, 
shallow}. None means that history states are not considered. Deep means that the old 
active state of the or-state and the old active states of all its sub-states are restored. 
Shallow means that only the active state of the or-state is restored and that its sub-
states are reinitialized as usual. The modification of function default that just has to 
replace function default(s) by function default( , s) is done by integrated a history 
mechanism. The terms default(none, s) and default(deep, s) are simply defined by 
default(s) and s, respectively. The definition of default(shallow, s) can be done along 
the structure of timed Statecharts terms as follows.  

default(shallow, [n, ]) =def [n, ] 
default(shallow, [n: s ;l;T]) =def  [n: [ default ( )]lls s ;l;T]  
default(shallow, [n: s ]) =def default(shallow, s ) 
Transition relation  is defined by using SOS rules by Plotkin [21] as follows. 

    
       (  )

premisename
conclusion

side condition
 as well as (  )

    
premisename side condition

conclusion
 

In this subsection, operational semantics of timed Statecharts transition in BASIC-
states, AND-states and OR-states was defined. There are three rules about BASIC-
states: BAS-1 rule describes the execution from one BASIC-state to another, where 
source(t)=[n, ], target(t)=[n , ], if the event ev(t), the clock constraints guard(t) of 

5.1   Translation Rules for Time Statecharts Based on Operational Semantics 
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t T and the invariants of the target state are satisfied, the transition be enabled, and 
the actions act(t) and the clock reset reset(t) are done. 

ev( ),guard( )
act ( ),reset ( ) name( )

En([ , ], , , ,[ , ])
[ , ] [ , ]

,source( ) [ , ],
                     target( ) [ , ],

(  reset( )  ) |

t t
t t t

n E G T n
n n

t T t n
t n

t v

BAS -1

reset in

 

BAS-2 rule describes the execution from one BASIC-state to one AND-state 
which is its brother. As noted above, for all super states (i.e. OR-state and AND-
state), their state invariants are always true, but when an OR-state is entered, one 
direct sub-state is entered, and until a BASIC-state. So we need to consider state 
invariant which can get from function . BAS-2 rule defines as follows. 

ev( ),guard( )
[ default ( , )]act ( ),reset ( ) name( )

En([ , ], , , ,[ : ; ; ])
[ , ] [ : ; ; ]

           , source( ) [ , ],
                            target( ) [ : ; ; ],

(  reset(

l

t t
l st t t

n E G T n s l T
n n s

t T t n
t n s l T

l T
BAS - 2

reset )  ) | ([ : ; ; ])t v n s l Tin

 

BAS-3 rule demonstrate the delay of BASIC-states, where v+d stands for the cur-
rent clock assignment plus the delay for all the clocks, we have 

( ) | ([ , ]) urgent( )
([ , ], ) ([ , ], )

                , | ([ , ])

d

v d Inv n t
n v n v d

d d v d Inv n

BAS - 3
 

There are also three rules about OR-states: one rules describes the execution of a 
timed Statecharts transition t T of an OR-state [n: s ;i;T]. It defines that the OR-state 
with currently active sub-state si may change to OR-state [n: [ default ( , )]lls s ;l;T] with 
currently active sub-state sl as rule OR-1.  

ev( ),guard( )
[ default ( , )]act ( ),reset ( ) name( )

En([ : ; ; ], , , ,[ : ; ; ])
[ : ; ; ] [ : ; ; ]

       ,source( ) [ : ; ; ],
                             target( ) [ : ; ; ],

(

l

t t
l st t t

n s i T E G T n s l T
n s i T n s l T

t T t n s i T
t n s l T

OR -1

re  reset( )  ) | ([ : ; ; ])t v n s l Tset in

 

Other rule that describes from the OR-state [n: s ;l;T] to BASIC-state, is not dis-
cussed particularly due to similar to BAS-1 rule. Another rule describes that the OR-
state [n: s ;l;T] with currently active sub-state sl may change with same label to the 
OR-state [n: [ ]ll ss ;l;T] with currently active sub-state ls  as rule OR-2. 

Model Checking for Timed Statecharts 269 



 

It is indispensable for transition rule of Statecharts AND-states to consider many 
enabled transitions to execute in parallel as rule AND. For AND-state’s parallel de-
scription, we firstly introduce process algebra. Process algebra [22] is a powerful 
formal method for depicting algebra structure and analyzing parallel system. Basic 
process algebra (BPA) is a core in all process algebra theory. Basic process terms are 
built from atomic actions, alternative composition and sequential composition.  

 An atomic action represents indivisible behavior, including event and action. 
 The symbol · denotes sequential composition. The process term p q executes p, 

and upon successful termination proceeds to execute q; 
 The symbol + denotes alternative composition. The process term p+q executes 

behavior of either p or q. 

By appending merge ||, left merge  and communication merge , BPA is extended 
to express process communication in parallel system. The merge || executes the two 
process terms in its arguments in parallel, the left merge  executes an initial transi-
tion of its first argument, and the communication merge  executes a communication 
between initial transitions of its arguments. The process term p||q executes p and q in 
parallel; analogously, p q executes restrictedly p in an initial transition; p q executes a 
communication p and q. 

AND-state of Statecharts specifies the parallel behavior of reactive system. In Fig. 
1, the AND-state n1 comprises two concurrent sub-states n2 and n3. Suppose the state 
configuration is currently in n4 and n8, if the event a and b occurs, the transition t1 and 
t3 is enabled. Because transitions can be taken in the sub-states of an AND-state si-
multaneously, the transition t1 and t3 is executed in parallel, as written t1||t3. Based on 
parallel axiom of process algebra, merge t1 || t3 = (t1 t3+ t3 t1) + t1  t3. 

1

1

,
,

( ( \ ( )))

1 |

( : )

( , : ( ev( )) act( ) )

[ : ] [ : ] || ... || [ : ]

{1,..., },  {1,...,| |},
                 

sou

m m

m m m

l

l j l
l H j l H

m m
m M m M m

m M

E G
m mA R L

i j

E act t G

MA R
L

m M s s

i j M t t

n s n s n s

M K k H M

|

AND

rce( ) , target( )m m m mL s L s

 

When AND-state includes k OR sub-states, an execution of k transitions in parallel 
need be considered. As above-mentioned, we can define AND rule, which an execu-
tion of |M| transitions in parallel in all sub-states sm of AND-state [n: s ] may be 
specified to [n: 1s ]||…||[n: | |Ms ] by merge of process algebra. 

,
,

,
, [ ]

[ : ; ; ] [ : ; ; ]
l

E G
l lA R L

E G
A R l sL

s s

n s l T n s l T
OR - 2  
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R1,…,Rm  R, such that (i) s s1 1
1 1
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A R 1 2 2

2 2
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m m

m m

E G
A R sm s , (ii) E1

m
i i E and 

A1
m
i i E= , (iii) A=act(sm) , (iv) 1

m
i Gi G, (v) (reset Ri in v) i, 0<i m, (vi)  

sm+1, Em+1, Am+1, Gm+1, Rm+1, sm 1 1

1 1

,
,

m m

m m

E G
A R  sm+1, where Em+1 E  and Am+1 E= . If 

timed Statecharts term s satisfies event E, clock constraints G, We may say, s may 
evolve in the single macro step s s  to timed Statecharts term s , generate ac-
tion A and reset clock R. 

,
,

E G
A R

5.3  Translate Time Statecharts into Timed Automata 

Given timed Statecharts, it can be translated into timed automata by a mapping : 
TS TA. To define the mapping function , we firstly suppose a timed Statecharts p 
by terms,, and define the entities S(p), C(p), L(p), p and Inv(p), which mean respec-
tively the states set, the clock set, the label set, the set of transition relation and the 
state invariant function of TA (p), where: 

 S(p) is a set of state configurations of Statecharts term p. The definition of S(p) 
can be done as follows. 
i. S([n, ])={{ ([n, ])}}={{n}} 
ii. S([n: s ;l;T])= {{ ([n:1 i k s ;l;T])} qi | qi S(si)} 
iii. S([n: s ])={{ ([n: s ])} 1 i k qi | qi S(si)} 

 C(p)=C a set of the timed Statecharts clocks; 
 L(p)=  represents the set of timed Statecharts event and action, written 

event/action;  
2 p p 2 p

 p S(p)×L(p)×G×R×S(p) that operation rules have already been discussed in the 
above, represent the sequence macro step of Statecharts. Assume a translation 
e=(s, L, G, R, s ) connects two states s and s , describes s s1 1

1 1

,
,

E G
A R 1 2 2

2 2

,
, ...E G

A R  
s,

,
m m

m m

E G
A R m s , where L=E1 E2 … Em/A1 A2 … Am, G=G1 G2 … Gm, 

R=R1 R2 … Rm;  
 Inv(p): S(p) C, a function that assigns to each state an invariant, where 

Inv([n, ])= ([n, ]), Inv([n: s ;i;T]) = ([n: s ;l;T]), Inv([n: s ])= ([n: s ]) 
 ( p) expresses the initial term set of timed Statecharts. We may define 

([n, ])={n}, ([n: s ;i;T])={n} s1, ([n: s ])={n} 1 i k si. 

Considering our example of timed Statecharts of Fig. 1, its translation TA of timed 
Statecharts is depicted in Figure 5. 

5.2  Macro Step 

The above rules realize a compositional semantics of timed Statecharts on sequences 
of the micro steps. However, we consider even more the classical macro-step seman-
tics of timed Statecharts. Let s, s SC, E, A , G G and R R, we write s s  and 
say s may perform a macro step with input E, output A, clock constraints G and clock 
reset R to s , if s1,…,sm SC, E1,…,Em ¬ ,  A1,…,Am ,  G1,…,Gm  G, 
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similar to [12] is lift interlevel transitions to the uppermost states that are exited and 
entered when transitions is taken. Let sr(t) (called source restriction) is a set of states 
which were the original states of the transition t, and td(t) (called target determinator) 
is a set of states that were entered originally. 

(n4,n8,x<5) a, x>3 (n5,n8,x>1)
b

a,  b

(n5, n9,x>1)(n4,n9,x<5)

a,  b

a, x>3

c

c

b

(n5,n7,x>4)

a, b, x>4
b,c

b, x>4
c

a, b, x>4
b,c

b, x>4
c

(n4,n7,4<x<5)

b, x>4 c

a, x>3
b

b, x>4
c

By transition label extensions added sr(t) and td(t), interlevel transitions can be 
compiled into non-interlevel transitions. 

In the following, we will describe how to eliminate clock invariants for super state 
of timed Statecharts. Assume that two state of timed Statecharts n1, n2 N, n1 be a 
super state, i.e. type(n1)=AND or type(n1)=OR, and n2 may be a arbitrary type, in-
cluding AND, OR and BASIC, and let n2 (n1). According to the priority of transi-
tions for timed Statecharts, we define the priority of state invariant that if sub-state n2 
invariant is satisfied but father-state n1 invariant is not, then the current state configu-
ration can not be in n2, i.e. clock invariant of state n1 is prior to clock invariant of sub-
state n2. In order to let that clock invariants of OR-state and AND-state always are 
true, only clock invariant of sub-states n2 need be updated such as 
Inv(n2)=Inv(n2) Inv(n1). More precisely, we define formally as follows. 
 n N, and type(n)=AND or type(n)=OR, Inv(n)=true; 
 n N, n k(root), type(n)=BASIC, Inv(n)=Inv(n)  1 i k  -i(n). 

where root is a unique root state and has no ancestor. k(root)= ( k-1(root)),  -1 that 
gives the father-state is a inverse of , and  -k(n) =  -1(  -(k-1)(n)). 

Given a timed Statecharts TS, and TCTL formulae , the model checking timed 
Statecharts problem that we are interested in is to check whether TS satisfies , ab-
breviated TS |= . According to the last translation rules, the equivalence model TA 

Without loss of generality, we wish to consider interlevel transitions and clock in-
variants of OR-state and AND-state for timed Statecharts. Harel considers interlevel 
transitions as important concept of the language [1]: “…as our methods does not 
necessarily advocate layer-by-layer development; it is more flexible and encourages 
interlevel connections too, whenever appropriate.” Hence we can not rule them out. 
This intricacy is mainly caused by interlevel transitions, but we wish to describe inter-
level transitions but have simple operational semantics. It is feasible and practical to 
change from interlevel transitions to non-interlevel transitions. Our approach that is 
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Fig. 5. Translation Timed Automata for timed Statecharts in Fig. 1 

 
 



 

2. The model checking problem for TCTL, deciding whether TA, s0|= , can be 
solved by constructing the region automaton (TA) under the time equivalence 
classes under ; 

3. Apply the CTL model checking procedure on (TA). 

Actually, the problem for model checking timed Statecharts can be converted to the 
classical problem for model checking timed automata [23][24]. 

6  Conclusion 

Timed Statecharts is an extension of the visual specification language Statecharts 
with real-time constructs, and can efficiently specify explicit dense time. The timed 
Statecharts serves better the modeling of complex reactive real-time systems. The 
paper presented a new approach for formalizing timed Statecharts semantics, which is 
centered on the compositional principle. Based on timed Statecharts term syntax and 
formal operational semantics, and description of parallel behavior by process algebra, 
each timed Statecharts is mapped to a timed automaton. This makes it possible to 
translate our hierarchical structure to a flat one and thus provide a framework for 
formal verification of a real-time extension of Statecharts. 
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