
Developing High Quality Software with

Formal Methods: What Else Is Needed?

Constance Heitmeyer

Naval Research Laboratory, Washington, DC 20375
heitmeyer@itd.nrl.navy.mil

Abstract. In recent years, many formal methods have been proposed for
improving software quality. These include new specification and modeling
languages, whose purpose is to precisely describe the required software
behavior at a high level of abstraction, and formal verification techniques,
such as model checking and theorem proving, for mechanically prov-
ing or refuting critical properties of the software. Unfortunately, while
promising, these methods are rarely used in software practice. This pa-
per describes improvements in languages, specifications and models, code
quality, and code verification techniques that could, along with existing
formal methods, play a major role in improving software quality.

1 Introduction

During the past two decades, many specification and modeling languages have
been introduced whose purpose is to precisely describe the required software
behavior at a higher level of abstraction than the code. Examples of these lan-
guages include the synchronous languages, such as Lustre [Halbwachs1993]; the
design language Statecharts [Harel1987]; requirements languages such as RSML
[Heimdahl and Leveson1996], and SCR [Heitmeyer et al.2005]; and design lan-
guages offered by industry, such as UML and Stateflow [Mathworks1999], a ver-
sion of Statecharts included in Matlab’s Simulink graphical language.

Specifications and models expressed in these languages can have important
advantages in software development. First, they provide a solid basis for both
evaluating and improving the software code. Moreover, because they usually
exclude design and implementation detail, these specifications and models are
more concise than code. As a result, they can serve as an effective medium for
customers and developers to communicate precisely about the required software
behavior. In addition, they allow both manual and automated analysis of the
required software behavior. Analyzing and correcting a software specification is
usually cheaper than analyzing and correcting the code itself because the specifi-
cation is most often smaller—thus finding and correcting bugs in a specification
is easier than finding and correcting bugs in code.

Significant advances have also occurred in formal verification. These advances
include automated analysis of software or a software artifact using an automated
theorem prover such as PVS [Owre et al.1993] or a model checker, such as Spin

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 13–19, 2005.
c© IFIP International Federation for Information Processing 2005

14 C. Heitmeyer

[Holzmann1997] or SMV [McMillan1993]. Such analysis is useful in analyzing a
software specification, a model, or software code for critical properties, such as
safety and security properties. Because the analysis is largely mechanical, these
techniques can be a cost-effective means of either verifying or refuting that a
software artifact or software code satisfies a specified property.

Unfortunately, while promising, formal specifications, models and verification
techniques are rarely used by most software developers. After reviewing how
formally-based tools can help developers improve the quality of both software
and software artifacts, this paper describes four enhancements to the software
development process which should not only improve software quality directly
but should also encourage the use of existing formal methods.

2 On the Role of Tools

Many automated techniques and tools have been developed in recent years to
improve the quality of software and to decrease the cost of producing quality
software [Heitmeyer2003]. Such tools can play an important role in obtaining
high confidence that a software system is correct, i.e., satisfies its requirements.
Described below are five different roles that tools can play in improving the
quality of both software and software artifacts. The first four help improve the
quality of a specification or model. The fifth uses a high-quality specification to
construct a set of tests for use in checking and debugging the software code.

2.1 Demonstrate Well-Formedness

A well-formed specification is syntactically and type correct, has no circular
dependencies, and is complete (no required behavior is missing) and consistent
(no behavior in the specification is ambiguous). Tools, such as NRL’s consistency
checker [Heitmeyer et al.1996], can automatically detect well-formedness errors.

2.2 Discover Property Violations

In analyzing software or a software artifact for a property, a tool, such as a model
checker, can uncover a property violation. By analyzing the counterexample
returned by the model checker, a developer may trace the problem to either a
flaw in the specification or to one or more missing assumptions. Alternatively,
the formulation of the property, rather than the specification, may be incorrect.
Detecting and correcting such defects can lead to higher quality specifications
and to higher quality code.

2.3 Verify Critical Properties

Either a theorem prover or a model checker may be used to verify that a software
artifact, such as a requirements specification or a design specification, satisfies a
critical property. Verifying that an artifact satisfies a set of properties can help
practitioners develop high confidence that the artifact is correct.

Developing High Quality Software with Formal Methods 15

2.4 Validate a Specification

A developer may use a tool, such as a simulator or animator, to check that a
formal specification captures the intended software behavior. By running scenar-
ios through a simulator (see, e.g., [Heitmeyer et al.2005]), the user can ensure
that the system specification neither omits nor incorrectly specifies the software
system requirements.

2.5 Automatically Construct a Suite of Test Cases

Specification-based testing can automatically derive a suite of test cases satis-
fying some coverage criterion, such as branch coverage, from a formal specifi-
cation [Gargantini and Heitmeyer1999]. Automated test case generation can be
enormously useful to software developers because 1) the cost and time needed
to automatically construct tests is much lower than the cost and time needed
in manually constructing tests, and 2) a suite of test cases mechanically gener-
ated from a specification usually checks a wider range of software behaviors than
manually generated tests and hence may uncover more software defects.

3 What Else Is Needed?

For practitioners to apply existing formal methods more widely, a number of
improvements in the software development process are needed. Described below
are four areas where improvements are needed—in specification and modeling
languages, in the quality of specifications and models, in the quality of manually
generated code, and in improved techniques for software verification.

3.1 Improved Languages

One area that should be revisited is specification and modeling languages. In
recent years, researchers have proposed many new languages for specifying and
modeling software. Although these languages have been applied effectively in
some specialized areas, for example, in control systems for nuclear power plants
and in avionics systems, they are still not used widely by software practitioners.
While languages introduced by industry, such as UML and Stateflow, are more
widely used, they lack a formal semantics. Moreover, the specifications and mod-
els that practitioners produce using these languages usually include significant
design and implement detail. Given the lack of formal semantics and the large
specifications and models that result when design and implementation detail
are included, the opportunity to analyze these specifications and models using
formally-based tools is severely limited.

Hence, existing languages either need to be enhanced with features (such
as fancy graphical interfaces) to encourage practitioners to use them, or new
languages need to be invented. One promising approach is to design languages
for specialized domains. For example, one or more languages could be designed
to specify and model the required behavior of networks and distributed sys-
tems. Significantly different specification and modeling languages are likely to

16 C. Heitmeyer

be needed to specify and model the required behavior of software used in auto-
mobiles or in avionics systems.

The benefits of using specification and modeling languages with an explicit
formal semantics and which minimize implementation detail could be enormous.
First, precise, unambiguous specifications can be analyzed automatically for
well-formedness, such as syntax and type correctness, consistency (no unwanted
non-determinism), and completeness (no missing cases), for critical application
properties, such as security and safety properties, and for validity (a check that
the specification captures the intended behavior). Specifications that are well-
formed, correct with respect to critical application properties, and validated us-
ing simulation also provide a solid foundation both for automatic test generation
and for generating efficient, provably correct source code.

3.2 Improved Specifications and Models

The specifications and models produced by practitioners (and some researchers)
usually include significant design and implementation detail (i.e., are close to
the code). Moreover, often they do not use abstraction effectively to remove re-
dundancy and to enhance readabililty. The result is large, hard to understand
specifications and models, filled with unnecessary detail and redundancy, which
do not distinguish between the required software behavior and implementation
detail. In part, this problem can be solved through education. The attributes of
good specifications and models and how to construct them are topics that need
to be taught and emphasized in software engineering curricula. The problem
of poor quality specifications and models can also be ameliorated by improved
specification and modeling languages. Such languages should reduce the oppor-
tunity for implementation bias and contain mechanisms which encourage the
construction of precise, concise, and readable specifications and models. Well-
thought out examples of high-quality specifications and models would also help
practitioners produce better specifications and models.

3.3 Improved Methods for Building Code

However, improved specification and modeling languages and improved specifi-
cations and models are not enough. In the end, what is needed is correct, efficient
code. As noted above, an important benefit of a formal specification is that it
provides a solid basis for automatically generating provably correct, efficient
code. While many techniques have been proposed for constructing source code
from specifications, and many software developers use automatic code generators
developed by industry, the code produced by these generators is often inefficient
and wasteful of memory. Urgently needed are improved, more powerful methods
for automatic generation of provably correct, efficient code from specifications.

Another promising approach to producing high quality code is to use “safe”
languages, such as Cyclone [Trevor et al.2002]. Using a language such as Cy-
clone, which is designed to improve the quality of C programs, can reduce code
vulnerabilities, such as uninitialized variables and potential sources of buffer

Developing High Quality Software with Formal Methods 17

overflows and arithmetic exceptions. A third promising approach to construct-
ing high quality code is to encourage programmers to annotate their code with
assertions that a compiler can check at run-time. Hardware designers routinely
include such assertions in their designs. Moreover, some C, C++, and Java pro-
grammers routinely use assertions as an aid in both detecting and correcting
software bugs. Increased use of both safe languages and the annotation of pro-
grams with assertions should help improve the quality of software code.

3.4 Improved Methods for Verifying Code

Although improved specifications and models and automatic code generation
from high quality specifications can help improve the quality of software, it is
highly likely that in the near future, most source code will be generated manu-
ally. Urgently needed therefore are improved methods for demonstrating that a
manually generated program satisfies critical properties.

One promising approach is to encourage programmers to annotate their code
with assertions and to then check those assertions automatically. While current
compilers for C, C++, and Java, support and check assertions that annotate
the code, the set of assertions that can be analyzed is very limited. Needed
are compilers that can not only check simple Boolean inequalities, e.g., x > 0,
but more complex assertions, e.g., priv(P, x) = R, which means that process P
has read privileges for variable x. Such assertions can be translated into logic
formulae, such as first-order logic formulae, and then a compiler should be able
to use decision procedures to check that the code satisfies these logic assertions.
In addition to helping practitioners document and detect bugs in their code, such
assertions may also be used to prove that the code satisfies critical properties,
such as security and safety properties.

Recently, we applied this approach to a software-based cryptographic system
called CD (Cryptographic Device) II, the second member of a family of systems,
each of which decrypts and encrypts data stored on two or more communication
channels [Kirby et al.1999]. An essential property of this system is to enforce
data separation, that is, to guarantee that data stored on one channel does
not influence nor is influenced by data stored on a different channel. Satisfying
this property is critical since data stored on one channel may be classified at
a different level (e.g., Top Secret) than data stored on another channel (e.g.,
Unclassified).

A technique which could automatically check code annotated with asser-
tions for a security property such as data separation would be extremely useful.
However, rather than directly checking the code for conformance to the secu-
rity property, an alternative is to construct a high-level formal specification of
a system’s required behavior, check the high-level specification for the property,
and then check that the code is a refinement of the specification. The benefit of
the high-level specification is that it describes precisely the set of services that
the software is required to support. In checking CD II for data separation, we
followed the latter approach: we constructed a high-level specification of the re-
quired behavior of CD II, used PVS to prove that the specification satisfied the

18 C. Heitmeyer

data separation property, and then used inspection to show that the CD code,
annotated with assertions, satisfied the high-level specification.

More automation of the process we used in verifying that the CD II code
satisfies the data separation property would have been extremely useful. Not only
would more automation dramatically reduce the human effort need to construct
and check the code assertions against both the code and the formal specification,
it would also significantly enhance our confidence that the code satisfied the
assertions and therefore enforced data separation since manual construction and
manual checking of assertions is somewhat error-prone. Two steps were especially
labor-intensive: 1) annotating the code with assertions and 2) verifying that
the code satisfied the assertions. Also expensive in terms of human effort was
the process of demonstrating that the code assertions satisfied the high-level
specification.

Adding some annotations to code is straightforward and, as mentioned above,
automatic checking of simple code annotations is already supported by many
source language compilers. However, generating more complex annotations from
code (e.g., constructing inductive invariants from loops) is a problem that re-
quires more research. Checking the conformance of the code with a set of asser-
tions using decision procedures is a promising approach that should be explored
by researchers and should help in automating the second step described above.
Finally, checking the conformance of a set of validated assertions with a formal
specification is also a problem that may require further research.

4 Summary

The improvements described above will require new research in specification and
modeling languages, in checking and constructing more complex code assertions,
in automatic code generation, and in code verification. They will also require
the transfer of existing research, for example, the use of safe languages such as
Cyclone, and of formal techniques, such as model checking, theorem proving, and
decision procedures, into programming practice. In addition, better educated
software developers are needed; such developers will know how to build high
quality specifications and models and will routinely include assertions in their
code. Finally, existing methods and tools must be better engineered. The result
of improved and more automated methods, better educated practitioners, and
better engineered tools should allow software practitioners to construct software
in an environment in which tools do the tedious analysis and book-keeping and
software developers are liberated to transform vague notions of the required
software behavior into precise, readable specifications that minimize design and
implementation detail and into code that is both provably correct and efficient.

Acknowledgments

Section 3.4, which proposes improved methods for verifying code, benefited from
discussions with my NRL colleagues, Michael Colon, Beth Leonard, Myla Archer,
and Ramesh Bharadwaj.

Developing High Quality Software with Formal Methods 19

References

[Gargantini and Heitmeyer1999] Angelo Gargantini and Constance Heitmeyer.
1999. Using model checking to generate tests from requirements specifica-
tions. In Proceedings, 7th European Software Engineering Conference and
7th ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE-7), LNCS 1687, pages 146–162, Toulouse, FR, September.
Springer-Verlag.

[Halbwachs1993] Nicolas Halbwachs. 1993. Synchronous Programming of Reac-
tive Systems. Kluwer Academic Publishers, Boston, MA.

[Harel1987] David Harel. 1987. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231–274, June.

[Heimdahl and Leveson1996] Mats P. E. Heimdahl and Nancy Leveson. 1996.
Completeness and consistency in hierarchical state-based requirements. IEEE
Transactions on Software Engineering, 22(6):363–377, June.

[Heitmeyer et al.1996] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. 1996.
Automated consistency checking of requirements specifications. ACM Trans-
actions on Software Engineering and Methodology, 5(3):231–261.

[Heitmeyer et al.2005] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords.
2005. Tools for constructing requirements specifications: The SCR toolset at
the age of ten. Computer Systems Science and Engineering, 20(1):19–35,
January.

[Heitmeyer2003] Constance Heitmeyer. 2003. Developing high assurance sys-
tems: On the role of software tools. In Proceedings, 22nd Internat. Conf. on
Computer Safety, Reliability and Security (SAFECOMP 2003), Edinburgh,
September. (invited).

[Holzmann1997] G. J. Holzmann. 1997. The model checker Spin. IEEE Trans-
actions on Software Engineering, 23(5):279–295, May.

[Kirby et al.1999] J. Kirby, M. Archer, and C. Heitmeyer. 1999. SCR: A practi-
cal approach to building a high assurance COMSEC system. In Proceedings,
15th Annual Computer Security Applications Conference (ACSAC ’99), pages
109–118, Phoenix, AZ, December. IEEE Computer Society.

[Mathworks1999] The Mathworks Inc. 1999. Stateflow for use with Simulink,
User’s Guide, Version 2 (Release 11). Natick, MA.

[McMillan1993] K. L. McMillan. 1993. Symbolic Model Checking. Kluwer Aca-
demic Pub., Englewood Cliffs, NJ.

[Owre et al.1993] Sam Owre, Natarajan Shankar, and John Rushby. 1993. User
guide for the PVS specification and verification system (Draft). Technical
report, Computer Science Lab, SRI Int’l, Menlo Park, CA.

[Trevor et al.2002] Jim Trevor, Greg Morrisett, Dan Grossman, Michael Hicks,
James Cheney, and Yanling Wang. 2002. Cyclone: A safe dialect of C. In
Proceedings, USENIX Annual Technical Conf., pages 275–288, Monterey, CA,
June.

	Introduction
	On the Role of Tools
	Demonstrate Well-Formedness
	Discover Property Violations
	Verify Critical Properties
	Validate a Specification
	Automatically Construct a Suite of Test Cases

	What Else Is Needed?
	Improved Languages
	Improved Specifications and Models
	Improved Methods for Building Code
	Improved Methods for Verifying Code

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

