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Abstract. A new protocol designed for real-time applications, the Data-
gram Congestion Control Protocol (DCCP), is specified informally in a
final Internet Draft that has been approved as an RFC (Request For
Comment). This paper analyses DCCP’s connection management pro-
cedures modelled using Coloured Petri Nets (CPNs). The protocol has
been modelled at a sufficient level of detail to obtain interesting results
including pinpointing areas where the specification is incomplete. Our
analysis discovers scenarios where the client and server repeatedly and
needlessly exchange packets. This creates a lot of unnecessary traffic,
inducing more congestion in the Internet. We suggest a modification to
the protocol that we believe solves this problem.

Keywords: DCCP, Internet Protocols, Coloured Petri Nets, State space
methods.

1 Introduction

Streaming media applications and online games are becoming increasingly pop-
ular on the Internet. Because these applications are delay sensitive, they use the
User Datagram Protocol (UDP) rather than the Transmission Control Protocol
(TCP). The users then implement their own congestion control mechanisms on
top of UDP or may not implement any control mechanism at all. The growth of
these applications therefore poses a serious threat to the Internet. To tackle this
problem, an Internet Engineering Task Force (IETF) working group is develop-
ing a new transport protocol, called the Datagram Congestion Control Protocol
(DCCP) [5+8]. The purpose of DCCP is to support various congestion control
mechanisms that suit different applications. It therefore could replace TCP/UDP
for delay sensitive applications and become the dominant transport protocol in
the Internet. Hence we consider that it is important to verify DCCP as soon as
possible, to remove errors and ambiguities and ensure its specification is com-
plete before implementation.

In this paper, Coloured Petri Nets (CPNs) [4] are used to model and analyse
DCCP’s connection management procedures. We chose CPNs because they are

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 143-I58] 2005.
© IFIP International Federation for Information Processing 2005



144 S. Vanit-Anunchai, J. Billington, and T. Kongprakaiwoot

used widely to model and analyse concurrent and complex systems [1/4] including
transport protocols like TCP [2I3]. We have previously applied our methodol-
ogy [2] to earlier versions of DCCP. We demonstrated [I1] that a deadlock occurs
in DCCP version 5 [6] during DCCP connection setup. Further work [9] upgraded
the model to version 6 [7] and also discovered undesired terminal states. These
models [TT9] were incomplete, in that they did not include DCCP’s synchroni-
sation procedures, which are used in conjunction with connection management.

As far as we are aware, this paper describes the first formal specification of
DCCP’s connection establishment, close down and synchronisation procedures
for version 11 [§] of the specification. Further, using a set of initial configurations,
we incrementally analyse the connection management procedures including the
synchronization mechanism. Although no deadlock or livelock is found, we dis-
cover some chatter in the protocol where both ends repeatedly exchange packets,
creating a lot of unnecessary traffic. We canvass a possible solution to this prob-
lem. A further contribution of this paper is the identification of areas where the
specification is incomplete.

This paper is organised as follows. To make the paper self-contained, section
2 summarises DCCP’s connection management procedures. The CPN model
of DCCP is illustrated in section 3, which starts with a statement of scope and
modelling assumptions, and closes with a discussion of areas of incompleteness in
the specification. Section 4 presents our analysis results and section 5 summarises
our work.

2 Datagram Congestion Control Protocol

DCCP [§] is a connection oriented protocol designed to overcome the problem
of uncontrolled UDP traffic. The connection management procedures have some
similarities with TCP, with some states being given the same names. However,
DCCP’s procedures are substantially different from those of TCP. For example,
connection establishment uses a 4-way handshake (rather than 3), there is no
notion of simultaneously opening a connection, connection release is simpler, as
it does not aim to guarantee delivery of data in the pipeline, and the use of
sequence numbers is quite different. There is also a procedure which allows a
server to request that the client closes the connection and waits for 2 Maximum
packet lifetimes (MPL) to ensure all old packets are removed, before a new
instance of the connection can be established, rather than the server having
to wait for this period. Further, DCCP includes procedures for resynchronizing
sequence numbers. This section summarises the key features of DCCP connection
management that we wish to model and analyse.

2.1 DCCP Packet Format

Like TCP, DCCP packets comprise a sequence of 32 bit words as shown in Fig.
1. The DCCP header contains 16 bit source and destination port numbers, an 8
bit data offset, a 16 bit checksum and sequence and acknowledgement numbers
in a very similar way to TCP. However, there are significant differences. DCCP
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01234567890123456789012345678901

Source Port Destination Port
Data Offset [CcVal |CsCov Checksum
Packet |x
Res |Type |=| Reserved Sequence Number (high bits)
1

Sequence Number (low bits)

Reserved Acknowledge Number
(high bits)

Acknowledge Number (low bits)

Options and Padding

Application Data

Fig. 1. DCCP Packet Format

defines 10 packets that are encoded using a 4 bit Packet Type field, rather
than the control bits used in TCP (for SYN, FIN, RST, ACK). The packets
are: Request, Response, Data, DataAck, Ack, CloseReq, Close, Reset, Sync and
SyncAck. Sequence (and acknowledgement) numbers are 48 bits long (instead
of 32 bits) and number packets rather than octets. The sequence number of a
DCCP-Data, DCCP-Ack or DCCP-DataAck packet may be reduced to 24 bits
by setting the X field to 0. CCVal, a 4 bit field, contains a value that is used by
the chosen congestion control mechanism [8]. Checksum Coverage (CsCov), also
a 4 bit field, specifies how much of the packet is protected by the 16 bit Checksum
field. Finally, the Options field can contain information such as Cookies and time
stamps but also allows DCCP applications to negotiate various features such as
the Congestion Control Identifier (CCID) and the size (width) of the Sequence
Number validity window [g].

2.2 Connection Management Procedures

The state diagram, shown in Fig. 2 illustrates the connection management pro-
cedures of DCCP. It comprises nine states rather than TCP’s eleven states.
The typical connection establishment and close down procedures are shown
in Fig. Bl Like TCP, a connection is initiated by a client issuing an “active
open” command. We assume that the application at the server has issued a
“passive open” command. After receiving the “active open”, the client sends a
DCCP-Request packet to specify the client and server ports and to initialize
sequence numbers. On receiving the DCCP-Request packet, the server replies
with a DCCP-Response packet indicating that it is willing to communicate with
the client. The response includes the server’s initial sequence number and any
features and options that the server agrees to. It also directly acknowledges re-
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Fig. 2. DCCP State Diagram [8]

ceiving the DCCP-Request. Note that acknowledgements are not cumulative.
The client sends an DCCP-Ack or DCCP-DataAck packet to acknowledge the
DCCP-Response packet and enters PARTOPEN (this is a new state introduced
in version 6 of the protocol). On receiving an acknowledgement from the client,
the server enters the OPEN state and is ready for data transfer. At the client,
after receiving one of a DCCP-Data, DCCP-DataAck, DCCP-Ack or DCCP-
SyncAck packet, the client enters OPEN indicating that the connection is estab-
lished. During data transfer, the server and client may exchange DCCP-Data,
DCCP-Ack and DCCP-DataAck packets (for piggybacked acknowledgements).

Fig. Bl (b) shows the typical close down procedure. The application at the
server issues a “server active close” command. The server sends a DCCP-
CloseReq packet and enters the CLOSEREQ state. When the client receives
a DCCP-CloseReq packet, it must generate a DCCP-Close packet in response.
After the server receives a DCCP-Close packet, it must respond with a DCCP-
Reset packet and enter the CLOSED state. When the client receives the DCCP-
Reset packet, it holds the TIMEWAIT state for 2 MPI[ before entering the
CLOSED state.

Alternatively, either end will send a DCCP-Close packet to terminate the
connection when receiving an “active close” command from the application.
The end that sends the DCCP-Close packet will hold the TIMEWAIT state

! Maximum packet lifetime time (MPL) = Maximum Segment Lifetime (MSL) in
TCP.



Discovering Chatter and Incompleteness in the DCCP 147

Client Server
Client Server
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Fig. 3. Typical Connection Establishment and Release Scenarios

Client Server Client Server
OPEN OPEN OPEN OPEN
[active close] Close Close [active close]
CLOSING seq= m, ack= n) (seq= m,ack=n CLOSING

CLOSED CLOSED

Reset
TIMEWAIT2 M) | (seq= n+1, ack= m) (seq= n+1, ack= m)| TIMEWAIT(2 mpL)
CLOSED CLOSED
(a) (b)

Fig. 4. Alternative Close Down Procedures

as shown in Fig. [l Beside these three closing procedures, there are another 2
possible scenarios concerned with simultaneous closing. The first procedure is
invoked when both users issue an “active close”. The second occurs when the
client user issues an “active close” and the application at the server issues the
“server active close” command.

2.3 Retransmission and Back-Off Timers

Besides the timer (2MPL) in the TIMEWAIT state, DCCP defines two further
timers: Retransmission and Back-off. When the sending client does not receive
an answer, the timeout period that it waits before retransmitting a packet is de-
termined by the Retransmission Timer (typically 2RT’IE). After retransmitting
for a period (typically 4AMPL), it sends a DCCP-Reset and enters the CLOSED
state. This timeout period is determined by the Back-off Timer. Generally, if the

2 RTT = Round Trip Time.
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Table 1. Validity Condition for Sequence and Acknowledgement Numbers

Packet Type Sequence Number Check Acknowledgement Number Check

Request SWL < seqno < SWH N/A
Response  SWL < seqno < SWH AWL < ackno < AWH
Data SWL < seqno < SWH N/A
Ack SWL < seqno < SWH AWL < ackno < AWH
DataAck SWL < seqno < SWH AWL < ackno < AWH
CloseReq  GSR < seqno < SWH GAR < ackno < AWH
Close GSR < seqno < SWH GAR < ackno < AWH
Reset GSR < seqno < SWH GAR < ackno < AWH
Sync SWL < seqno AWL < ackno < AWH
SyncAck SWL < seqno AWL < ackno < AWH

server does not receive a timely response (typically 4MPL), it sends a DCCP-
Reset and enters CLOSED. This timeout period is also governed by the Back-off
Timer. However when in CLOSEREQ if no response is received within 2 RTT,
the server retransmits DCCP-CloseReq. Retransmissions typically occur for 4
MPL but if no response is received, a DCCP-Reset is sent and the server en-
ters the CLOSED state. The sequence number of every retransmitted packet is
always increased by one.

2.4 Variables and Sequence Validity

For each connection, DCCP entities maintain a set of state variables. Among
those, the important variables are Greatest Sequence Number Sent (GSS), Great-
est Sequence Number Received (GSR), Greatest Acknowledgement Number Re-
ceived (GAR), Initial Sequence Number Sent and Received (ISS and ISR), Valid
Sequence Number window width (W) and Acknowledgement Number validity
window width (AW). Based on the state variables, the valid sequence and ac-
knowledgement number intervals are defined by Sequence Number Window Low
and High [SWL,SWH], and Acknowledgement Number Window Low and High
[AWL,AWH] according to the equations of pages 40-41 of the DCCP Defini-
tion [8]. Additionally the SWL and AWL are initially not less than the initial
sequence number received and sent respectively.

Generally, received DCCP packets that have sequence and acknowledgement
numbers inside these windows are valid, called “sequence-valid”. Table [I] shows
the window ranges for each packet type. The DCCP-CloseReq, DCCP-Close and
DCCP-Reset are valid only when seqno > GSR and ackno > GAR.

However, there are some exceptions to Table 1, depending on state. According
to the pseudo code (see [§] pages 54-58), no sequence validity check is performed
in the CLOSED, LISTEN and TIMEWAIT states. In the REQUEST state, only
the acknowledgement numbers of the DCCP-Response and DCCP-Reset packets
are validated. Other packet types received are responded to with a DCCP-Reset.
The acknowledgement number of a DCCP-Reset received in the REQUEST state
is validated using [AWL,AWH)] instead of [GAR,AWH].
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2.5 DCCP-Reset Packets

An entity in the CLOSED, LISTEN or TIMEWAIT state ignores a DCCP-Reset
packet while replying to any other unexpected packet types with DCCP-Reset. In
other states on receiving a sequence-valid DCCP-Reset packet, the entity goes
to TIMEWAIT for 2MPL and then enters the CLOSED state. If the DCCP-
Reset packet received is sequence-invalid, the entity responds with a DCCP-
Sync. However a sequence-invalid DCCP-Response or DCCP-Reset received in
the REQUEST state will be responded to with a DCCP-Reset instead of a
DCCP-Sync. When the client is in the REQUEST state, it has not received an
initial sequence number (no GSR). In this case the acknowledgement number of
the DCCP-Reset is set to zero.

2.6 Resynchronizing Sequence Numbers

Malicious attack or a burst of noise may result in state variables and sequence
and acknowledgement number windows being unsynchronized. The DCCP-Sync
and DCCP-SyncAck packets are used to update GSR and to resynchronize
both ends. When receiving a sequence-invalid packet, an end must reply with
a DCCP-Sync packet. It does not update GSR because the sequence number
received could be wrong. However the acknowledgement number in the DCCP-
Sync packet is set equal to this invalid received sequence number. After re-
ceiving a sequence-valid DCCP-Sync, the end must update its GSR variable
and reply with a DCCP-SyncAck. It does not update GAR. After receiving
a sequence-valid DCCP-SyncAck, an end updates GSR and GAR. An end ig-
nores sequence-invalid DCCP-Sync and DCCP-SyncAck packets, except in the
CLOSED, TIMEWAIT, LISTEN and REQUEST states where a DCCP-Reset

is sent in response.

3 Modelling DCCP’s Connection Management
Procedures

3.1 Modelling Scope and Assumptions

Our model comprises all the state transitions of Fig. Bl including the following
details from the DCCP Definition [8]: the pseudo code of section 8.5 (pages 54—
58); the narrative description of DCCP’s event processing in section 8 (pages
48-54); and packet validation in section 7 (pages 38-44). We also make the fol-
lowing assumptions regarding DCCP connection management when creating our
CPN model.

1. We only consider at single connection instance while ignoring the proce-
dures for data transfer, congestion control and other feature options. A DCCP
packet is modelled by its packet type, sequence number and acknowledgement
number. Other fields in the DCCP header are omitted because they do not affect
the operation of the connection management procedure.

2. Sequence numbers are assumed not to wrap.
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Fig. 5. Hierarchy Page

3. We do not consider misbehaviour or malicious attack.

4. Reordered or lossy channels may mask out possible deadlock, such as
unspecified receptions. Thus we incrementally study [2] the CPN model with
the following channel characteristics: FIFO without loss, reordered without loss,
FIFO with loss, and reordered with loss. However due to space limitations, we
only discuss the case when the communication channels can delay and reorder
packets without loss.

5. We set the window size to 100 packets because it is specified as the initial
default value in the specification (page 31 of DCCP [g]).

6. Without loss of generality, we only use DCCP-Ack and not DCCP-DataAck
in order to reduce the size of the state space.

3.2 Structure

The structure of our DCCP CPN model has been influenced by our earlier
work [3ITT]. Tt is structured into four hierarchical levels shown in Fig. [l and com-
prises 6 places, 27 substitution transitions, 63 executable transitions and 9 func-
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App_Server
COMMAND

1/(CLOSED, 0,
{GSS=S_gss0,GSR=S_gsr0,
GAR=S_gar0},{ISS=S_iss, ISR=S_isr})

1‘a_Open

App_Client
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Client_State k

PACKETS

Fig. 6. The DCCP Overview Page

[y

color PacketTypel = with Request | Data;
color PacketType2 = with Sync | SyncAck | Response | Ack | DataAck
| CloseReq | Close | Rst;

N

var p_typel:PacketTypel;

var p_type2:PacketType2;

color SN = IntInf with ZERO..MaxSeqNo; var sn:SN;
color SN_AN = record SEQR:SN*ACK:SN; var sn_an:SN_AN;

color PacketTypelxSN = product PacketTypel*SN;
color PacketType2xSN_AN = product PacketType2*SN_AN;
color PACKETS = union PKT1:PacketTypelxSN+PKT2:PacketType2xSN_AN;

© 00 N O O W

Fig. 7. Definition of DCCP PACKETS

tions. The first level is named DCCP. This level calls a page named DCCP CM
(DCCP connection management) twice (for the client and the server). This al-
lows one DCCP entity to be defined and instantiated as either a client or server,
greatly simplifying the specification and its maintenance. This has proven to be
very beneficial due to there being 6 revisions since we first modelled DCCP [I1].
The third level has ten pages, describing the procedures that are followed in each
DCCP state. Processing common to several states is specified in the Common
Processing page. For convenience of editing and maintaining the model, we group
the transitions that have common functions into the fourth level pages. Signifi-
cant effort has gone into validating this model against the DCCP definition [§]
by using manual inspection and interactive simulation [2].

3.3 DCCP Overview

The top level, corresponding to DCCP#1 in the hierarchy page, is the DCCP
Overview Page shown in Fig.[6 It is a CPN diagram comprising 6 places (repre-
sented by ellipses), two substitution transitions (represented by rectangles with
an HS tag) and arcs which connect places to transitions and vice versa. The
client is on the left and the server on the right and they communicate via two
channels, shown in the middle of Fig.[6l We model unidirectional and re-ordering
channels from the client to the server and vice versa by places named Ch C S
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1 color STATE = with CLOSED | LISTEN | REQUEST | RESPOND |
PARTOPEN | S_OPEN | C_OPEN | CLOSEREQ | CLOSING | TIMEWAIT;
2 color RCNT = int; var rcnt:RCNT; (*Retransmit Counter *)
3 color GS = record GSS:SN*GSR:SN*GAR:SN; var g:GS;
4 color ISN = record ISS:SN*ISR:SN; var isn:ISN;
5 color CB = product STATE*RCNT*GS*ISN;
6 color COMMAND = with p_Open | a_Open | server_a_Close | a_Close;

Fig. 8. DCCP’s Control Block and User Commands

[state = RESPOND orelse

state = S_OPEN orelse

state = C_OPEN orelse

state = PARTOPEN orelse  if PktValid(Sync, sn_an, g, isn) then

state = CLOSEREQ orelse  1'‘PKT2(SyncAck,{SEQ=incr(#GSS(g)),

state = CLOSING] ACK=#SEQ(sn_an)}) (PTout]

(state, rent, g, isn) RevSync else empty
@ N

if PktValid(Sync,sn_an,g,isn) then PKT2(Sync,sn_an) PACKETS
(state,rent,{GSS=incr(#GSS(g)),
GSR=#SEQ(sn_an), GAR=#GAR(g)}, isn)
else (state,rent,g, isn)
[PI0] .
Stalte\ (PARTOPEN, rent,g,isn) RevSyncAckin
PARTOPEN PKT2(SyncAck,sn_an) R
CB if PktValid(SyncAck,sn_an,g,isn) then
(C_OPEN, 0,{GSS=#GSS(g),
GSR=#SEQ(sn_an), GAR=Update(#GAR(g),
#ACK(sn_an))}, isn)
else (PARTOPEN,rcnt,g,isn) [state = RESPOND orelse state = C_OPEN
orelse state = S_OPEN orelse state = CLOSEREQ
orelse state = CLOSING]
\\ (state,rent,g,isn) RcvSyncAck Input
PKT2(SyncAck,sn_an)
if PktValid(SyncAck,sn_an,g,isn) then PACKETS

(state,rent,{GSS=#GSS(g),
GSR=#SEQ(sn_an), GAR=Update(#GAR(g),
#ACK(sn_an))},isn) else (state,rent,g,isn)

Fig. 9. The Sync Rcv Page

and Ch S C which are typed by PACKETS. Fig. [[ declares PACKETS (line 9)
as a union of packets with and without acknowledgements.

Places, Client State and Server State, typed by CB (Control Block), store
DCCP state information. Fig. [§ defines CB (line 5) as a product comprising
STATE, RCNT (Retransmit Counter), GS (Greatest Sequence Number) and ISN
(Initial Sequence Number). Places named App Client and App Server, typed by
COMMAND, model DCCP user commands. Fig. [§ also defines COMMAND
(line 6). Tokens associated with these places shown on the top of ellipses, for
example “a Open”, are called initial markings. They represent the initial state
of the system.

3.4 Second, Third and Fourth Level Pages

The substitution transitions DCCP C and DCCP S in Fig. [6l are linked to the
second level page named DCCP CM (as shown in Fig. 5). DCCP CM is orga-
nized into a further ten substitution transitions linked to the third level pages,
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fun incr(sn:SN) = if

fun SeqValid(p_type2:
let

© 00 N O d W N -

10 in case p_type2 of

12 | Ack => IntInf
13 | DataAck => IntInf.
14 | CloseReq => IntInf.
15 | Close => IntInf.
16 | Rst => IntInf.
17 | Sync => IntInf.
18 | SyncAck => IntInf.
19 | _ => false

20 end;

(sn = MaxSeqNo) then ZERO else IntInf.+(sn, ONE);

fun Update(new:SN,0ld:SN) = if (IntInf.>(new,0ld)) then new else old;
val W = IntInf.fromInt(100); val AW = IntInf.fromInt(100);

PacketType2, s2:SN_AN, g:GS, isn:ISN) =
(* Sequence Number Validity *)

val SWL=IntInf.max(IntInf.-(IntInf.+(#GSR(g),0NE),

IntInf.div(W,IntInf.fromInt(4))),#ISR(isn));

val SWH=IntInf.+(IntInf.+(#GSR(g),0NE),

RealToIntInf 4((IntInfToReal 4 W)*3.0/4.0+0.5));
Response => IntInf.>=(#SEQ(s2),SWL)

andalso IntInf.<=(#SEQ(s2),SWH)
.>=(#SEQ(s2),SWL) andalso IntInf.<=(#SEQ(s2),SWH)
>=(#SEQ(s2),SWL) andalso IntInf.<=(#SEQ(s2),SWH)
>(#SEQ(s2) ,#GSR(g)) andalso IntInf.<=(#SEQ(s2),SWH)
>(#SEQ(S2),#GSR(g))andalso IntInf.<=(#SEQ(s2),SWH)
>(#SEQ(s2) ,#GSR(g)) andalso IntInf.<=(#SEQ(s2),SWH)
>=(#SEQ(s2) ,SWL)
>=(#SEQ(s2),SWL)

21 fun AckValid(p_type2:PacketType2, s2:SN_AN, g:GS, isn:ISN) =

22 let

(* Acknowledgement Number Validity*)

23  val AWL = IntInf.max(IntInf.-(IntInf.+(#GSS(g),0NE),AW) ,#ISS(isn));

24 val AWH = #GSS(g);
25 in case p_type2 of

27 | Ack => IntInf.
28 | DataAck => IntInf.
29 | CloseReq =>IntInf.
30 | Close => IntInf
31 | Rst => IntInf.
32 | Sync => IntInf.
33 | SyncAck => IntInf.
34 | _ => false

35 end;

Response =>  IntInf.>=(#ACK(s2),AWL)

andalso IntInf.<=(#ACK(s2),AWH)
>=(#ACK(s2) ,AWL) andalso IntInf.<=(#ACK(s2),AWH)
>=(#ACK(s2) ,AWL) andalso IntInf.<=(#ACK(s2),AWH)
>=(#ACK(s2) ,#GAR(g)) andalso IntInf.<=(#ACK(s2),AWH)

.>=(#ACK(s2) ,#GAR(g)) andalso IntInf.<=(#ACK(s2),AWH)

>=(#ACK(s2) ,#GAR(g) ) andalso IntInf.<=(#ACK(s2),AWH)
>=(#ACK(s2) ,AWL) andalso IntInf.<=(#ACK(s2),AWH)
>=(#ACK(s2) ,AWL) andalso IntInf.<=(#ACK(s2),AWH)

36 fun PktValid(p_type2:PacketType2, s2:SN_AN, g:GS, isn:ISN) =
37 SeqValid(p_type2:PacketType2,s2:SN_AN,g:GS,isn:ISN)

38 andalso AckValid(p_

Fig.10.

type2:PacketType2,s2:SN_AN, g:GS, isn:ISN);

Functions used in the Sync Rcv Page

representing the processing required in each DCCP state. We group the tran-
sitions that have common functions into the fourth level pages. In particular,
we model the behaviour of DCCP in the RESPOND, PARTOPEN, OPEN,

CLOSEREQ and CLOS

ING states when receiving DCCP-Reset and DCCP-

Sync packets into pages named Reset Rcv and Sync Rev pages under the Com-

mon Processing page in

the third level. The RevOthPkt page models DCCP’s

behaviour in the OPEN, CLOSEREQ and CLOSING states when receiving pack-
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ets other than DCCP-CloseReq, DCCP-Closing, DCCP-Reset, DCCP-Sync and
DCCP-SyncAck. Space limits prevent us from including all pages, but a repre-
sentative example is given in Fig. [0 The figure shows the level of detail required
to capture the procedures to be followed by both the client and the server when
receiving the DCCP-Sync and DCCP SyncAck packets. Fig. [0 shows functions
incr(), Update() and PktValid() used in the Sync Rev page.

3.5 Incompleteness in the Specification

User commands appear in the state diagram of Fig. [ but the specification [§]
does not provide any detail. As stated in version 5 [6], the application may try to
close during connection establishment. Thus an “active close” command could
occur in the REQUEST, RESPOND, PARTOPEN and OPEN states. Similarly,
at the server, a “serve active close” command could also occur in the RESPOND
and OPEN states. We assume this to be the case in our model, but do not analyse
it in this paper.

When the server enters the RESPOND state, it has no information about
GAR which is needed to validate the acknowledgement number of DCCP-
CloseReq, DCCP-Close and DCCP-Reset. We believe that the specification does
not currently cater for the situation when the server receives one of these pack-
ets in the RESPOND state. This may happen when the client’s user issues an
“active close” command while it is in the REQUEST state. The solution to this
problem needs further investigation and we do not analyse these scenarios in
this paper.

4 Analysis of DCCP CPN Model

4.1 Initial Configuration

Using an incremental approach [2] we analyse different connection management
scenarios by choosing a number of different initial markings. This is to gain con-
fidence in the model and to provide insight into DCCP’s behaviour. In this paper
we limit the maximum number of retransmissions to one to make the generation
of the state space tractable. We analyse the DCCP model using Design/CPN
4.0.5 on a Pentium-1V 2 GHz computer with 1GB RAM. Initial markings of each
scenario are shown in Table

Case I is for connection establishment. The client and server are both
CLOSED with ISS set to five. The client issues an “active Open” command
while the server issues a “passive Open” command. There are five scenarios of
connection termination when both ends are in the OPEN state. Cases II, III and
IV model the case when only one end issues a close command. Cases V and VI
represent the simultaneous close scenarios when both ends issue close commands
at the same time. Each end has the initial values of GSS, GSR and GAR shown
in Table 2 and the channels are empty.
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Table 2. Initial Configurations

Case App Client App Server Client State Server State
I 1‘aOpen 1‘p Open CLOSED CLOSED
GSS=0,GSR=0,GAR=0 GSS=0,GSR=0,GAR=0
1SS=5,ISR=0 1SS=5,ISR=0
I 1‘a Close OPEN OPEN
GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200
111 1‘a Close OPEN OPEN
GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200
v 1‘Server OPEN SOPEN
a Close GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200
V  1'a Close 1‘a Close OPEN OPEN
GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200
VI 1‘a Close  1‘Server OPEN OPEN

a Close  GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200

4.2 State Space Results

Table Blsummarizes the state space statistics. The last column shows the number
of terminal states which have the same pair of states but different value of GSS,
GSR and GAR. In all cases nothing is left in the channels.

In case I, connection establishment, there are three different types of terminal
states. The first type is desired when both ends are in OPEN. The second type
is when both ends are CLOSED. This can occur when the request or response
is sufficiently delayed so that the Back-off timer expires, closing the connection.
The third type is when the client is CLOSED, but the server is in the LISTEN
state. This situation can happen when the server is initially CLOSED and thus
rejects the connection request. After that the server recovers and moves to the
LISTEN state. Although we are unable to obtain the full state space for case
VI because of state explosion, we can obtain partial state spaces. Case VI a) is
when there is no retransmission. Case VI b) is when only one DCCP-Close is
retransmitted. Case VI c¢) is when only one DCCP-CloseReq is retransmitted.
Cases IT, III, IV, V, VI a), VI b) and VI ¢) have only one type of terminal state
when both ends are in CLOSED.

The Strongly Connected Component (SCC) graphs of all cases (except case
VI) were generated. The size of each SCC graph is the same as the size of the
state space. This indicates that there are no cycles and hence no livelocks in the
state spaces.

4.3 DCCP Chatter During Connection Establishment

Further analysis of case I shows that the state space size grows almost linearly
with ISS, as illustrated in Table Bl We have investigated how ISS affects the
state space size and found an interesting result. Fig. [Tl shows a trace illustrat-
ing chatter for the case when ISS=2. The values in brackets, for instance (7,2,3),
are (GSS,GSR,GAR). The server, in the CLOSED state, repeatedly sends a
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Table 3. State Space Results

Case Nodes Arcs Time Dead Markings
(sec)  Client State Server State Number
I 171,040 457,535 1,067 OPEN OPEN 67
CLOSED CLOSED 1,153
CLOSED  LISTEN 4
1I 73 119 0 CLOSED CLOSED 8
11 73 119 0 CLOSED CLOSED 8
IV 30,787 76,796 62 CLOSED CLOSED 645
\Y 3,281 8,998 3 CLOSED CLOSED 64
VI >545,703 >1,475,936 >152,200 CLOSED CLOSED  >702
VIa) 437 828 0 CLOSED CLOSED 33
VIb) 3,324 8,381 3 CLOSED CLOSED 89
VIc) 33,644 85,926 74 CLOSED CLOSED 642
Table 4. Growth of the State Space as a Function of ISS
ISS Nodes Arcs Time Dead Markings

(sec) Client State Server State Number

1 86,058 225,485 325 OPEN OPEN 67
CLOSED CLOSED 733
CLOSED  LISTEN 4
2 104,464 275,540 457 OPEN OPEN 67
CLOSED CLOSED 823
CLOSED  LISTEN 4
3 124,763 330,900 596 OPEN OPEN 67
CLOSED CLOSED 923
CLOSED  LISTEN 4
4 146,955 391,565 785 OPEN OPEN 67
CLOSED CLOSED 1,022
CLOSED  LISTEN 4
5 171,040 457,535 1,067 OPEN OPEN 67
CLOSED CLOSED 1,153
CLOSED  LISTEN 4

sequence-invalid DCCP-Reset packet while the client in PARTOPEN repeat-
edly responds with DCCP-Sync. The sequence and acknowledgement numbers
in both packets increase over time until the sequence number of the DCCP-
Reset received is greater than the client’s GSR and becomes sequence-valid
according to Table [l Figll shows the sequence number of the DCCP-Reset
generated increases from zero to three while the client’s GSR is equal to two.
When receiving the sequence-valid DCCP-Reset (with seq=3), the client enters
the TIMEWAIT state and then CLOSED after 2 MPL. A similar situation hap-
pens when the server enters the LISTEN state after sending the DCCP-Reset
with sequence number zero. This behaviour creates unnecessary traffic, adversely
affecting congestion in the Internet. It will be particularly severe if the initial
sequence number is even moderately large, which will often be the case.
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Client Server
CLOSED CLOSED
[active open] [passive open]
REQUEST Request (seq =2) LISTEN
(GSS,GSR,GAR) \l (GSS,GSR,GAR)
Request (seq =3)
REQUEST (%,3,%)
(3,x,x) | Response(seq =2,ack =3)
RESPOND
PARTOPEN Ack (seq ¥ 4,ack=2) | (2,3,x)
4,2,3) Time Out
Rst (seq %3} ack =3)
] cLosep
Rst (seq = 0Xack = 2)
Sync (seq 7 5yack=0)
(5,2,3)
Rst (seq =1, ack =5) | CLOSED
Sync (geq = 6,ack=1)
(6,2,3)
Rst (seq = 2, ack = 6) CLOSED
Syng (seq = 7,ack=2)
(7,2,3)
t (seq = 3, ack = 7) CLOSED
TIME-WAIT
CLOSED /
Rst (seq = 3, ack = 4)

Fig. 11. Repeatedly Exchanged Messages for Case I with ISS=2

This problem is caused by the invalid DCCP-Reset packet having sequence
number zero. Because there are no sequence number variables in the CLOSED
or LISTEN state, according to the specification [8] section 8.3.1, the sequence
number of the DCCP-Reset packet generated in the CLOSED and LISTEN
states is the received acknowledgement number plus one. If there is no received
acknowledgement number because the received packet type is DCCP-Request
(or DCCP-Data), the sequence number of the DCCP-Reset packet is set to zero
and the acknowledgement number is set to the received sequence number.

In versions 5 and 6 of the draft specification[6l7], the DCCP-Reset packet with
sequence number zero is specified as a valid packet. However, our previous work
[9/TT] shows that this valid DCCP-Reset causes deadlocks where the server is in
the CLOSED state and the client is in OPEN. Since draft specification version 7,
a DCCP-Reset with sequence number zero is no longer considered a valid packet.
A solution may be to ignore an incoming packet without an acknowledgement
number when received in the CLOSED or LISTEN state. This is because every
state (except CLOSED and LISTEN) has a Back-off timer, which will guarantee
that the other end will eventually go to the CLOSED state.

5 Conclusion

This paper has illustrated a formal specification and has provided an initial
but detailed analysis of DCCP’s connection management procedures. Signifi-
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cant effort has been spent on ensuring that the CPN specification accurately
captures the pseudo code and narrative description in the final Internet Draft
version 11 [8]. This has revealed areas in the specification which we believe to
be incomplete as discussed in section 3.5. Our analysis has discovered scenarios
where the client keeps sending DCCP-Sync packets in response to the server
sending sequence-invalid DCCP-Reset packets. This may have an adverse effect
on congestion in the Internet, if the initial sequence number chosen is even mod-
erately large. Future work will involve modifying the procedures to eliminate
this problem and verifying that the revised model works correctly. We need to
analyse our model when an application closes during connection establishment
as was discussed in section 3.5. We would also like to extend our work to include
Option/Feature negotiation.
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